To address the pressing need for reducing building energy consumption and combating climate change, thermoelectric glazing (TEGZ) presents a promising solution. This technology harnesses waste heat from buildings and converts it into electricity, while maintaining comfortable indoor temperatures. Here, we developed a TEGZ using cost-effective materials, specifically aluminium-doped zinc oxide (AZO) and copper iodide (CuI).
View Article and Find Full Text PDFThe efficiency of mesoporous perovskite solar cells (mp-PSCs) is significantly influenced by favorable charge transport properties across their various interfaces. The interfaces involving compact-TiO, mesoporous electron transport layer (ETL), and perovskite layer are particularly vital for high-performing devices. Our study presents a combined experimental and computational approach, specifically employing density functional theory, to explore the impact of mesoporous-ETL/perovskite interface properties on carrier transport.
View Article and Find Full Text PDFLead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications.
View Article and Find Full Text PDFAs reserves of non-renewable energy sources decline, the search for sustainable alternatives becomes increasingly critical. Next-generation energy materials play a key role in this quest by enabling the manipulation of properties for effective energy solutions and understanding interfaces to enhance energy yield. Studying these interfaces is essential for managing charge transport in optoelectronic devices, yet it presents significant challenges.
View Article and Find Full Text PDFJ Mater Sci Mater Med
August 2024
Diamond-like Carbon (DLC) has been used as a coating material of choice for a variety of technological applications owing to its favorable bio-tribo-thermo-mechanical characteristics. Here, the possibility of bringing DLC into orthopedic joint implants is examined. With ever increasing number of patients suffering from osteoarthritis as well as with the ingress of the osteoarthritic joints' malaise into younger and more active demographics, there is a pressing need to augment the performance and integrity of conventional total joint replacements (TJRs).
View Article and Find Full Text PDFConsidering the importance of physics and chemistry at material interfaces, we have explored the coupling of multinary chalcogenide semiconductor CuNiSnS nanoparticles (CNTS NPs) for the first time with the noble metal (Au) to form Au-CNTS nano-heterostructures (NHSs). The Au-CNTS NHSs is synthesized by a simple facile hot injection method. Synergistic experimental and theoretical approaches are employed to characterize the structural, optical, and electrical properties of the Au-CNTS NHSs.
View Article and Find Full Text PDFPhotoelectrochemical water splitting via solar irradiation has garnered significant interest due to its potential in large-scale renewable hydrogen production. Heterostructure materials have emerged as an effective strategy, demonstrating enhanced performance in photoelectrochemical water-splitting applications compared to individual photocatalysts. In this study, to augment the performance of sprayed TiVO thin films, a hydrothermally prepared WO underlayer was integrated beneath the spray pyrolised TiVO film.
View Article and Find Full Text PDFBalancing thermal and visual comfort in buildings necessitates effective insulation to counteract heat loss and gain, especially with temperature variances. One promising approach is to combine phase change materials, such as poly(ethylene glycol) (PEG), with high-performance insulators like silica aerogel (Si). To bolster opto-thermal performance in building envelopes, we introduce a smart insulation composite material through PEG integration, i.
View Article and Find Full Text PDFThis study investigates the incorporation of Ba at a low concentration into CsPbIBr, resulting in the formation of mixed CsPbBaIBr perovskite films. Photovoltaic devices utilizing these Ba-doped CsPbIBr (Ba-CsPbIBr) perovskite films achieved a higher stabilized power conversion efficiency of 14.07% compared to 11.
View Article and Find Full Text PDFOffshore hydrogen production through water electrolysis presents significant technical and economic challenges. Achieving an efficient hydrogen evolution reaction (HER) in alkaline and natural seawater environments remains daunting due to the sluggish kinetics of water dissociation. To address this issue, we synthesized electrocatalytic WO@CdS nanocomposites (WCSNCs) using ultrasonic-assisted laser irradiation.
View Article and Find Full Text PDFPhotocatalytic hydrogen evolution represents a transformative avenue in addressing the challenges of fossil fuels, heralding a renewable and pristine alternative to conventional fossil fuel-driven energy paradigms. Yet, a formidable challenge is crafting a high-efficacy, stable photocatalyst that optimizes solar energy transduction and charge partitioning even under adversarial conditions. Within the scope of this investigation, tantalum-iron heterojunction composites characterized by intricate, discoidal nanostructured materials were meticulously synthesized using a solvothermal-augmented calcination protocol.
View Article and Find Full Text PDFThis paper addresses the regulation of water quality influencers such as Organic Nitrogen, Ammonia Nitrogen, Nitrate Nitrogen, Dissolved Organic Carbon and Dissolved Oxygen for a sub-surface flow horizontal wetland in a controlled environment. The plant uncertainty is quantified by using measurement data. The robust control of the process is achieved using a decentralized quantitative feedback theory based control strategy.
View Article and Find Full Text PDFAmidst the global challenges posed by pollution, escalating energy expenses, and the imminent threat of global warming, the pursuit of sustainable energy solutions has become increasingly imperative. Thermoelectricity, a promising form of green energy, can harness waste heat and directly convert it into electricity. This technology has captivated attention for centuries due to its environmentally friendly characteristics, mechanical stability, versatility in size and substrate, and absence of moving components.
View Article and Find Full Text PDFPoly-ether-ether-ketone (PEEK) and PEEK composites are outstanding candidates for biomedical applications, such as orthopedic devices, where biocompatibility and modulus match with surrounding tissue are requisite for long-term success. The mechanical properties can be optimized by incorporating fillers such as continuous and chopped carbon fibers. While much is known about the mechanical and tribological behavior of PEEK composites, there are few articles that summarize the viability of using PEEK reinforced with carbon fibers in orthopedic implants.
View Article and Find Full Text PDFRemoving wastewater pollutants using semiconducting-based heterogeneous photocatalysis is an advantageous technique because it provides strong redox power charge carriers under sunlight irradiation. In this study, we synthesized a composite of reduced graphene oxide (rGO) and zinc oxide nanorods (ZnO) called rGO@ZnO. We established the formation of type II heterojunction composites by employing various physicochemical characterization techniques.
View Article and Find Full Text PDFThe future of energy generation is well in tune with the critical needs of the global economy, leading to more green innovations and emissions-abatement technologies. Introducing concentrated photovoltaics (CPVs) is one of the most promising technologies owing to its high photo-conversion efficiency. Although most researchers use silicon and cadmium telluride for CPV, we investigate the potential in nascent technologies, such as perovskite solar cell (PSC).
View Article and Find Full Text PDFImproving efficient electrocatalysts (ECs) for hydrogen generation through water splitting is of significant interest in tackling the upcoming energy crisis. Sustainable hydrogen generation is the primary prerequisite to realizing the future hydrogen economy. This work examines the electrocatalytic activity of hydrothermally prepared vanadium doped MnCo spinel oxide microspheres (MC), MnVCoO (V-MnCo MC, where x ≤ 0.
View Article and Find Full Text PDFPhotoelectrochemical (PEC) water splitting is one of the promising, environmentally friendly, carbon emission-free strategies for the cost-effective production of hydrogen. The interest in developing effective approaches for solar-to-hydrogen production with stable and visible light active semiconductors directed many researchers to develop stable and efficient materials. For the first time, a nanostructured TiVO photoanode was fabricated at a substrate temperature of 250 °C and further annealed at 600 °C using the spray pyrolysis technique and it obtained an optical band gap of ∼2.
View Article and Find Full Text PDFBioactive glass (BG) is an interesting topic in soft tissue engineering because of its biocompatibility and bonding potential to increase fibroblast cell proliferation, synthesize growth factors, and stimulate granulation tissue development. The proposed BG with and without sodium (Na), prepared by the sol-gel method, is employed in wound healing studies. The BG/graphene oxide (GO) and BG (Na-free)/GO nanocomposites were investigated against fibroblast L929 cells in vitro; the 45S5 BG nanocomposites exhibited desired cell viability (80%), cell proliferation (30%), cell migration (25%), metabolic activity, and wound contraction due to extracellular matrix (ECM) production and enhanced protein release by fibroblast cells.
View Article and Find Full Text PDFBeilstein J Nanotechnol
July 2022
Organophosphate-based pesticides (e.g., parathion (PT)) have toxic effects on human health through their residues.
View Article and Find Full Text PDFThe thermal performance of window glazing requires improvement for a sustainable built environment at an acceptable cost. The current work demonstrates a multifold smart composite consisting of an optimized InO/ZnO-polymethyl methacrylate-paraffin composite to reduce heat exchange through the combined self-cleaning and energy-saving envelope of the smart built environment. This work has attempted to develop a smart composite coating that combines photosensitive metal oxide and phase change materials and investigate their thermal comfort performance as a glazed window.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) exhibit tremendous potential in the sustainable management of dye wastewater via degrading azo dyes while generating electricity. The past decade has witnessed advances in MFC configurations and materials; however, comprehensive analyses of design and material and its association with dye degradation and electricity generation are required for their industrial application. MFC models with high efficiency of dye decolorization (96-100%) and a wide variation in power generation (29.
View Article and Find Full Text PDFThe emergence of perovskite solar cells (PSCs) in a "catfish effect" of other conventional photovoltaic technologies with the massive growth of high-power conversion efficiency (PCE) has given a new direction to the entire solar energy field. Replacing traditional metal-based electrodes with carbon-based materials is one of the front-runners among many other investigations in this field due to its cost-effective processability and high stability. Carbon-based perovskite solar cells (c-PSCs) have shown great potential for the development of large scale photovoltaics.
View Article and Find Full Text PDFPigments can retain their color for many centuries and can withstand the effects of light and weather. The paint industry suffers from issues like aggressive moisture, corrosion, and further environmental contamination of the pigment materials. Low-cost, long-lasting, and large-scale pigments are highly desirable to protect against the challenges of contamination that exist in the paint industry.
View Article and Find Full Text PDF