Mutations in the "chloroquine resistance transporter" (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates.
View Article and Find Full Text PDFMutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT.
View Article and Find Full Text PDFThe human malaria parasite Plasmodium falciparum is capable of adapting to vastly different extracellular Ca(2+) environments while maintaining tight control of its intracellular Ca(2+) concentration. The mechanisms underpinning Ca(2+) homeostasis in this important pathogen are only partly understood. Here we have functionally expressed the putative Ca(2+)/H(+) antiporter PfCHA in Xenopus laevis oocytes.
View Article and Find Full Text PDFDrug resistance represents a major obstacle in the radical control of malaria. Drug resistance can arise in many different ways, but recent developments highlight the importance of mutations in transporter molecules as being major contributors to drug resistance in the human malaria parasite Plasmodium falciparum. While approximately 2.
View Article and Find Full Text PDF