A novel fiber laser structure, to the best of our knowledge, based on an erbium-doped fiber ring (EDFR) and a silica microbottle resonator (MBR) is proposed and investigated experimentally. Two fiber laser samples based on MBRs with different geometries and diameters of 200 and 150 µm are fabricated, and their performance is studied experimentally. Periodic whispering gallery mode spectra of the MBRs are dependent on the position of the fiber taper used for coupling of light into the MBR, and this dependence is explored to achieve lasing at different wavelengths by moving the light coupling point along the axis of the microbottle incorporated into the proposed EDFR-MBR system.
View Article and Find Full Text PDFA novel micron-range displacement sensor based on a whispering-gallery mode (WGM) microcapillary resonator filled with a nematic liquid crystal (LC) and a magnetic nanoparticle- coated fiber half-taper is proposed and experimentally demonstrated. In the proposed device, the tip of a fiber half-taper coated with a thin layer of magnetic nanoparticles (MNPs) moves inside the LC-filled microcapillary resonator along its axis. The input end of the fiber half-taper is connected to a pump laser source and due to the thermo-optic effect within the MNPs, the fiber tip acts as point heat source increasing the temperature of the LC material in its vicinity.
View Article and Find Full Text PDFA novel tunable whispering gallery modes (WGMs) resonator based on a nematic liquid crystal (LC)-filled capillary and magnetic nanoparticles (MNPs)-coated tapered fiber has been proposed and experimentally demonstrated. Thermo-optic tuning of the WGM resonances has been demonstrated by varying optical pump laser power injected into the MNPs-coated fiber half-taper inside the capillary. The tuning mechanism relies on the change of the effective refractive index (RI) of the nematic LC, caused by the photo-thermal effect of MNPs on the surface of the fiber half-taper inducing a temperature change inside the capillary.
View Article and Find Full Text PDFGold films are widely used for different applications. We present the results of third- and high-order nonlinear optical studies of the thin films fabricated from Au nanoparticle solutions by spin-coating methods. These nanoparticles were synthesized by laser ablation of bulk gold in pure water using 200 ps, 800 nm pulses.
View Article and Find Full Text PDF