Publications by authors named "Anuradha Natarajan"

Biocatalysts provide many advantages over the traditional chemically assisted processes prevalent in industries. Consequently, the search for novel enzymes has increased over the years with a renewed interest in thermophilic and psychrophilic bacterial species. Enzymes or extremozymes extracted from such species have exhibited an affinity to extreme temperatures which is a prerequisite for many industrial applications.

View Article and Find Full Text PDF

In this study, using a metagenomic approach, we explore the bacterial diversity of compost sites categorized based on their ambient temperatures. The two sites were Reckong Peo in the lower Himalayas and Tambaram in the southern region of the country, namely, CPR and CT. Following assembly of the raw reads from shotgun metagenomics, similarity hits were generated using NCBI BLAST + and SILVA database.

View Article and Find Full Text PDF

Ureibacillus thermophilus strain LM102 is a facultative thermophile with growth in range 37 °C-60 °C. Upon identification using the 16S rRNA marker, it showed highest similarity of 99.8% with U.

View Article and Find Full Text PDF

Depending on the inflammatory milieu, injury can result either in a tissue's complete regeneration or in its degeneration and fibrosis, the latter of which could potentially lead to permanent organ failure. Yet how inflammatory cells regulate matrix-producing cells involved in the reparative process is unknown. Here we show that in acutely damaged skeletal muscle, sequential interactions between multipotent mesenchymal progenitors and infiltrating inflammatory cells determine the outcome of the reparative process.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a frequent cancer with limited treatment options and poor prognosis. Tumorigenesis has been linked with macrophage-mediated chronic inflammation and diverse signalling pathways, including the epidermal growth factor receptor (EGFR) pathway. The precise role of EGFR in HCC is unknown, and EGFR inhibitors have shown disappointing clinical results.

View Article and Find Full Text PDF

Although classical dogma dictates that satellite cells are the primary cell type involved in skeletal muscle regeneration, alternative cell types such as a variety of inflammatory and stromal cells are also actively involved in this process. A model describing myogenic cells as direct contributors to regeneration and nonmyogenic cells from other developmental sources as important accessories has emerged, with similar systems having been described in numerous other tissues in the body. Increasing evidence supports the notion that inflammatory cells function as supportive accessory cells, and are not merely involved in clearing damage following skeletal muscle injury.

View Article and Find Full Text PDF

Efficient tissue regeneration is dependent on the coordinated responses of multiple cell types. Here, we describe a new subpopulation of fibro/adipogenic progenitors (FAPs) resident in muscle tissue but arising from a distinct developmental lineage. Transplantation of purified FAPs results in the generation of ectopic white fat when delivered subcutaneously or intramuscularly in a model of fatty infiltration, but not in healthy muscle, suggesting that the environment controls their engraftment.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is activated by many ligands and belongs to a family of tyrosine kinase receptors, including ErbB2, ErbB3, and ErbB4. These receptors are de-regulated in many human tumors, and EGFR amplification, overexpression, and mutations are detected at a high frequency in carcinomas and glioblastomas, which are tumors of epithelial and glial origin, respectively. From the analysis of EGFR-deficient mice, it seems that the cell types mostly affected by the absence of EGFR are epithelial and glial cells, the same cell types where the EGFR is found to be overexpressed in human tumors.

View Article and Find Full Text PDF

Mice lacking the EGF receptor (EGFR) die between midgestation and postnatal day 20 with various defects in neural and epithelial organs. Here, we generated mice carrying a floxed EGFR allele to inactivate the EGFR in fetal and adult liver. Perinatal deletion of EGFR in hepatocytes resulted in decreased body weight, whereas deletion in the adult liver did not affect body mass.

View Article and Find Full Text PDF

Mice lacking epidermal growth factor receptor (EGFR) develop a neurodegeneration of unknown etiology affecting exclusively the frontal cortex and olfactory bulbs. Here, we show that EGFR signaling controls cortical degeneration by regulating cortical astrocyte apoptosis. Whereas EGFR(-/-) midbrain astrocytes are unaffected, mutant cortical astrocytes display increased apoptosis mediated by an Akt-caspase-dependent mechanism and are unable to support neuronal survival.

View Article and Find Full Text PDF