The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σ -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment.
View Article and Find Full Text PDFCandida auris is a nosocomial fungal pathogen of prime importance due to its global emergence and rapid spread in healthcare facilities worldwide. One important concern is that routine, conventional methods fail to identify C. auris.
View Article and Find Full Text PDFIn Bacillus subtilis, biofilm and sporulation pathways are both controlled by a master regulator, Spo0A, which is activated by phosphorylation via a phosphorelay-a cascade of phosphotransfer reactions commencing with autophosphorylation of histidine kinases KinA, KinB, KinC, KinD, and KinE. However, it is unclear how the kinases, despite acting via the same regulator, Spo0A, differentially regulate downstream pathways, i.e.
View Article and Find Full Text PDFCoccidioidomycosis (Valley fever) is a pulmonary and systemic fungal disease with increasing incidence and expanding endemic areas. The differentiation of etiologic agents Coccidioides immitis and C. posadasii remains problematic in the clinical laboratories as conventional PCR and satellite typing schemes are not facile.
View Article and Find Full Text PDFIt is generally considered that if an RNA World ever existed that it would be driven by an RNA capable of RNA replication. Whether such a catalytic RNA could emerge in an RNA World or not, there would need to be prior routes to increasing complexity in order to produce it. It is hypothesized here that increasing sequence variety, if not complexity, can in fact readily emerge in response to a dynamic equilibrium between synthesis and degradation.
View Article and Find Full Text PDF