Publications by authors named "Anupama Seshan"

A simple, broadly applicable method was developed using an in vitro transposition reaction followed by transformation into Escherichia coli and screening plates for fluorescent colonies. The transposition reaction catalyzes the random insertion of a fluorescent protein open reading frame into a target gene on a plasmid. The transposition reaction is employed directly in an E.

View Article and Find Full Text PDF

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated.

View Article and Find Full Text PDF

The proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In , the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated.

View Article and Find Full Text PDF

In budding yeast, alignment of the anaphase spindle along the mother-bud axis is crucial for maintaining genome integrity. If the anaphase spindle becomes misaligned in the mother cell compartment, cells arrest in anaphase because the mitotic exit network (MEN), an essential Ras-like GTPase signaling cascade, is inhibited by the spindle position checkpoint (SPoC). Distinct localization patterns of MEN and SPoC components mediate MEN inhibition.

View Article and Find Full Text PDF

In the Saccharomyces cerevisiae pheromone-response pathway, the transcription factor Ste12 is inhibited by two mitogen-activated protein (MAP)-kinase-responsive regulators, Dig1 and Dig2. These two related proteins bind to distinct regions of Ste12 but are redundant in their inhibition of Ste12-dependent gene expression. Here we describe three functions for Dig1 that are non-redundant with those of Dig2.

View Article and Find Full Text PDF

Lte1, a protein important for exit from mitosis, localizes to the bud cortex as soon as the bud forms and remains there until cells exit from mitosis. Ras, the Rho GTPase Cdc42 and its effector the protein kinase Cla4 are required for Lte1's association with the bud cortex. Here we investigate how Ras, and the Cdc42 effector Cla4 regulate the localization of Lte1.

View Article and Find Full Text PDF

Establishing the temporal order of mitotic events is critical to ensure that each daughter cell receives a complete DNA complement. The spatial co-ordination of the cytokinetic ring site with the axis of chromosome segregation is likewise crucial. Recent studies in fungi indicate that regulators of chromosome segregation also participate in promoting mitotic exit and that the proteins that initiate mitotic exit, in turn, additionally regulate cytokinesis.

View Article and Find Full Text PDF

Background: The putative guanine nucleotide exchange factor Lte1 plays an essential role in promoting exit from mitosis at low temperatures. Lte1 is thought to activate a Ras-like signaling cascade, the mitotic exit network (MEN). MEN promotes the release of the protein phosphatase Cdc14 from the nucleolus during anaphase, and this release is a prerequisite for exit from mitosis.

View Article and Find Full Text PDF