Background: Bacterial infections following childbirth-so-called puerperal infections-cause morbidity in 5%-10% of all new mothers. At low frequency, the infection can spread to the blood, resulting in life-threatening sepsis known as puerperal sepsis. Pathogens causing puerperal sepsis include group A Streptococcus (GAS), and epidemiological analyses have identified isolates of a single serotype, M28, as being nonrandomly associated with cases of puerperal sepsis.
View Article and Find Full Text PDFUnlabelled: Group A Streptococcus (GAS) (Streptococcus pyogenes) causes more than 700 million human infections each year. The significant morbidity and mortality rates associated with GAS infections are in part a consequence of the ability of this pathogen to coordinately regulate virulence factor expression during infection. RofA-like protein IV (RivR) is a member of the Mga-like family of transcriptional regulators, and previously we reported that RivR negatively regulates transcription of the hasA and grab virulence factor-encoding genes.
View Article and Find Full Text PDFPhenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non-randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA.
View Article and Find Full Text PDFThe development of lytic bacteriophages as therapeutic products is an attractive alternative to antibiotics. In this study, we evaluated the potential of phage tails for lysing Gram-positive bacteria. Phage P954, a well-characterized temperate staphylococcal phage, was found to adsorb to a large number of Staphylococcus aureus clinical isolates, although it lyses only 24% of the tested isolates.
View Article and Find Full Text PDF