Chlorophyll has long been used as a natural indicator of plant health and photosynthetic efficiency. Laser-induced fluorescence (LIF) is an emerging technique for understanding broad spectrum organic processes and has more recently been used to monitor chlorophyll response in plants. Previous work has focused on developing a LIF technique for imaging moss mats to identify metal contamination with the current focus shifting toward application to moss fronds and aiding sample collection for chemical analysis.
View Article and Find Full Text PDFThe ability to detect, measure, and locate the source of contaminants, especially heavy metals and radionuclides, is of ongoing interest. A common tool for contaminant identification and bioremediation is vegetation that can accumulate and indicate recent and historic pollution. However, large-scale sampling can be costly and labor-intensive.
View Article and Find Full Text PDFThe "Search for life", which may be extinct or extant on other planetary bodies is one of the major goals of NASA planetary exploration missions. Finding such evidence of biological residue in a vast planetary landscape is an enormous challenge. We have developed a highly sensitive instrument, the "Compact Color Biofinder", which can locate minute amounts of biological material in a large area at video speed from a standoff distance.
View Article and Find Full Text PDFWe report the results on the combustion of single, levitated droplets of -tetrahydrodicyclopentadiene (JP-10) doped with titanium-aluminum-boron (Ti-Al-B) reactive metal nanopowders (RMNPs) in an oxygen (60%)-argon (40%) atmosphere by exploiting an ultrasonic levitator with droplets ignited by a carbon dioxide laser. Ultraviolet-visible (UV-vis) emission spectroscopy revealed the presence of gas-phase aluminum (Al) and titanium (Ti) atoms. These atoms can be oxidized in the gas phase by molecular oxygen to form spectroscopically detected aluminum monoxide (AlO) and titanium monoxide (TiO) transients.
View Article and Find Full Text PDFFluorescence spectra of graphitic (-CN) and spherical (-CN) modifications of carbon nitride were measured as a function of green pulsed (6 ns-pulse) laser intensity. It was found that the intensity of the laser increases the maximum of the fluorescence shifts towards the anti-Stokes side of the fluorescence for -CN spherical nanoparticles. This phenomenon was not observed for -CN particles.
View Article and Find Full Text PDFWe have developed a compact instrument called the "COmpact COlor BIofinder", or CoCoBi, for the standoff detection of biological materials and organics with polyaromatic hydrocarbons (PAHs) using a nondestructive approach in a wide area. The CoCoBi system uses a compact solid state, conductively cooled neodymium-doped yttrium aluminum garnet (Nd:YAG) nanosecond pulsed laser capable of simultaneously providing two excitation wavelengths, 355 and 532 nm, and a compact, sensitive-gated color complementary metal-oxide-semiconductor camera detector. The system is compact, portable, and determines the location of biological materials and organics with PAHs in an area 1590 cm wide, from a target distance of 3 m through live video using fast fluorescence signals.
View Article and Find Full Text PDFOrganiCam is a laser-induced luminescence imager and spectrometer designed for standoff organic and biosignature detection on planetary bodies. OrganiCam uses a diffused laser beam (12° cone) to cover a large area at several meters distance and records luminescence on half of its intensified detector. The diffuser can be removed to record Raman and fluorescence spectra from a small spot from 2 m standoff distance.
View Article and Find Full Text PDFWe describe the fabrication of an underwater time-gated standoff Raman sensor, consisting of a custom Raman spectrometer, custom scanner, and commercial diode-pumped pulsed 532 nm laser all located inside a pressure housing. The Raman sensor was tested in the laboratory with samples in air, a tank containing tap water and seawater, and in the coastal Hawaiian harbor. We demonstrate our new system by presenting standoff Raman spectra of some of the chemicals used in homemade explosive devices and improvised explosive devices, including sulfur, nitrates, chlorates, and perchlorates up to a distance of ∼6 m in seawater and tap water.
View Article and Find Full Text PDFThe SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas.
View Article and Find Full Text PDFRaman spectroscopy is a technique that can detect and characterize a range of molecular compounds such as water, water ice, water-bearing minerals, and organics of particular interest to planetary science. The detection and characterization of these molecular compounds, which are indications of habitability on planetary bodies, have become an important goal for planetary exploration missions spanning the solar system. Using a compact portable remote Raman system consisting of a 532 nm neodymium-doped yttrium aluminum garnet- (Nd:YAG-) pulsed laser, a 3-in.
View Article and Find Full Text PDFRaman-enhanced spectroscopy (RESpect) probe, which enhances Raman spectroscopy technology through a portable fiber-optic device, characterizes tissues and cells by identifying molecular chemical composition showing distinct differences/similarities for potential tumor markers or diagnosis. In a feasibility study with the ultimate objective to translate the technology to the clinic, a panel of pediatric non-Hodgkin lymphoma tissues and non-malignant specimens had RS analyses compared between standard Raman spectroscopy microscope instrument and RESpect probe. Cryopreserved tissues were mounted on front-coated aluminum mirror slides and analyzed by standard Raman spectroscopy and RESpect probe.
View Article and Find Full Text PDFWe report the remote Raman spectra of natural igneous, metamorphic, and sedimentary rock samples at a standoff distance of 5 m. High-quality remote Raman spectra of unprepared rocks are necessary for accurate and realistic analysis of future Raman measurements on planetary surfaces such as Mars. Our results display the ability of a portable compact remote Raman system (CRRS) to effectively detect and isolate various light- and dark-colored mineral phases in natural rocks.
View Article and Find Full Text PDFThe detection and identification of materials from a distance is highly desirable for applications where accessibility is limited or there are safety concerns. Raman spectroscopy can be performed remotely and provides a very high level of confidence in detection of chemicals through vibrational modes. However, the remote Raman detection of chemicals is challenging because of the very weak nature of Raman signals.
View Article and Find Full Text PDFHIV-positive individuals are at increased risk for precancerous anal squamous intraepithelial lesions (SILs). Anal cytology and digital rectal examination are performed as screening tools, but extensive training and appropriate instruments are required to follow up on an abnormal anal cytology. Thus, novel approaches to SIL evaluation could improve better health care follow-up by efficient and timely diagnosis to offer treatment options.
View Article and Find Full Text PDFThe remote detection of chemicals using remote Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) is highly desirable for homeland security and NASA planetary exploration programs. We recently demonstrated Raman spectra with high signal-to-noise ratio of various materials from a 430 m distance during daylight with detection times of 1-10 s, utilizing a 203 mm diameter telescopic remote Raman system and 100 mJ/pulse laser energy at 532 nm for excitation. In this research effort, we describe a simple two-components approach that helps to obtain remote Raman and LIBS spectra of targets at distance of 246 m with 3 mJ/pulse in daytime.
View Article and Find Full Text PDFWe report the development of an innovative standoff ultracompact micro-Raman instrument that would solve some of the limitations of traditional micro-Raman systems to provide a superior instrument for future NASA missions. This active remote sensor system, based on a 532 nm laser and a miniature spectrometer, is capable of inspection and identification of minerals, organics, and biogenic materials within several centimeters (2-20 cm) at a high 10 μm resolution. The sensor system is based on inelastic (Raman) light scattering and laser-induced fluorescence.
View Article and Find Full Text PDFRaman spectroscopy is a characterization technique that is able to analyze and detect water or water-bearing minerals, minerals, and organic materials that are of special interest for planetary science. Using a portable pulsed remote Raman system with a commercial 8 in. (203.
View Article and Find Full Text PDFWe determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained.
View Article and Find Full Text PDFUnlabelled: We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm(2) area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers.
View Article and Find Full Text PDFA multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km).
View Article and Find Full Text PDFIn the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy.
View Article and Find Full Text PDFAn integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The ChemCam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the ChemCam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses.
View Article and Find Full Text PDFWe discuss the novel design of a sensitive, normal-Raman spectrometer interfaced to an ultra-high vacuum chamber (5 × 10(-11) Torr) utilized to investigate the interaction of ionizing radiation with low temperature ices relevant to the solar system and interstellar medium. The design is based on a pulsed Nd:YAG laser which takes advantage of gating techniques to isolate the scattered Raman signal from the competing fluorescence signal. The setup incorporates innovations to achieve maximum sensitivity without detectable heating of the sample.
View Article and Find Full Text PDFThe capability to analyze and detect the composition of distant samples (minerals, organics, and chemicals) in real time is of interest for various fields including detecting explosives, geological surveying, and pollution mapping. For the past 10 years, the University of Hawaii has been developing standoff Raman systems suitable for measuring Raman spectra of various chemicals in daytime or nighttime. In this article we present standoff Raman spectra of various minerals and chemicals obtained from a distance of 120 m using single laser pulse excitation during daytime.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2011
The authors have utilized a recently developed compact Raman spectrometer equipped with an 85 mm focal length (f/1.8) Nikon camera lens and a custom mini-ICCD detector at the University of Hawaii for measuring remote Raman spectra of minerals under supercritical CO(2) (Venus chamber, ∼102 atm pressure and 423 K) excited with a pulsed 532 nm laser beam of 6 mJ/pulse and 10 Hz. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10× beam expander to a 1mm spot on minerals located at 2m inside a Venus chamber, it is possible to measure the remote Raman spectra of anhydrous sulfates, carbonates, and silicate minerals relevant to Venus exploration during daytime or nighttime with 10s integration time.
View Article and Find Full Text PDF