Background: Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically.
View Article and Find Full Text PDFCurr Top Med Chem
September 2021
Diabetes Mellitus (DM) is an endocrine disease, which is the 3rd leading cause of death in humans; additionally, it is one of the major key concerns over the globe. The high levels of glucose in the blood stream are as well characterized by hyperglycaemia leading to serious damage to the heart, blood vessels, kidney, eyes, and nerves. The best treatment of DM is still not available; many scientists worldwide are trying hard to seek out suitable treatment of DM.
View Article and Find Full Text PDFBackground: Due to the limited availability of antibiotics, Gram-negative bacteria (GNB) acquire different levels of drug resistance. It raised an urgent need to identify such agents, which can reverse the phenomenon of drug resistance.
Objective: To understand the mechanism of drug resistance reversal of glycosides; niaziridin and niazirin isolated from the pods of Moringa oleifera and ouabain (control) against the clinical isolates of multidrug-resistant Escherichia coli.
The emergence of multi drug resistance (MDR) in Gram-negative bacteria (GNB) and lack of novel classes of antibacterial agents have raised an immediate need to identify antibacterial agents, which can reverse the phenomenon of MDR. The purpose of present study was to evaluate synergy potential and understanding the drug resistance reversal mechanism of chanoclavine isolated from Ipomoea muricata against the multi-drug-resistant clinical isolate of Escherichia coli (MDREC). Although chanoclavine did not show antibacterial activity of its own, but in combination, it could reduce the minimum inhibitory concentration (MIC) of tetracycline (TET) up to 16-folds.
View Article and Find Full Text PDFAntibacterial and synergy potential of naturally occurring indole alkaloids (IA): 10-methoxy tetrahydroalstonine (1), isoreserpiline (2), 10 and 11 demethoxyreserpiline (3), reserpiline (4), serpentine (5), ajmaline (6), ajmalicine (7), yohimbine (8), and α-yohimbine (9) was evaluated using microbroth dilution assay. Further, α-yohimbine (9) was chemically transformed into six semisynthetic derivatives (9A-9F), and their antibacterial and synergy potential in combination with nalidixic acid (NAL) against E. coli strains CA8000 and DH5α were also evaluated.
View Article and Find Full Text PDFAs a part of our drug discovery program, ursolic acid was chemically transformed into six semi-synthetic derivatives, which were evaluated for their antibacterial and drug resistance reversal potential in combination with conventional antibiotic nalidixic acid against the nalidixic acid-sensitive and nalidixic acid-resistant strains of Escherichia coli. Although ursolic acid and its all semi-synthetic derivatives did not show antibacterial activity of their own, but in combination, they significantly reduced the minimum inhibitory concentration of nalidixic acid up to eightfold. The 3-O-acetyl-urs-12-en-28-isopropyl ester (UA-4) and 3-O-acetyl-urs-12-en-28-n-butyl ester (UA-5) derivatives of ursolic acid reduced the minimum inhibitory concentration of nalidixic acid by eightfold against nalidixic acid-resistant and four and eightfold against nalidixic acid-sensitive, respectively.
View Article and Find Full Text PDFA novel strain of Pseudomonas monteilii, PsF84, was isolated from tannery waste soil from Jajmau, Kanpur, India. 16S rRNA gene sequence phylogenetic analysis confirmed the taxonomic affiliation of PsF84 as P. monteilii.
View Article and Find Full Text PDFpH-zone-refining centrifugal partition chromatography was successively applied in the large-scale separation of close R(f) antipsychotic indole alkaloids directly from CHCl(3) fraction of Rauwolfia tetraphylla leaves. Two experiments with increasing mass from 500 mg to 3 g of crude alkaloid extracts (1C) of R. tetraphylla were carried out in normal-displacement mode using a two-phase solvent system composed of methyl tert-butyl ether/ACN/water (4:1:5, v/v/v) where HCl (12 mM) was added to the lower aqueous stationary phase as a retainer and triethylamine (5 mM) to the organic mobile phase as an eluter.
View Article and Find Full Text PDFAntibacterial activity of lysergol (1) and its semi-synthetic derivatives (2-14) and their synergy with the conventional antibiotic nalidixic acid (NA) against nalidixic acid-sensitive (NASEC) and nalidixic acid-resistant (NAREC) strains of Escherichia coli were evaluated. Lysergol (1) and derivatives (2-14) did not possess antibacterial activity of their own, but in combination, they significantly reduced the minimum inhibitory concentration (MIC) of NA. All the derivatives showed two- to eightfold reduction in the MIC of NA against NAREC and NASEC.
View Article and Find Full Text PDFIntroduction: Solanum species are important ingredients of many traditional Indian medicines and thus the quality control of their herbal formulations is of paramount concern.
Objective: To establish a simple and effective high-performance liquid chromatographic (HPLC) method to evaluate the quality of Solanum species and their herbal formulations.
Methodology: A rapid, simple, sensitive, robust and reproducible HPLC method was developed for the determination of three steroidal glycosides (SG); indioside D, solamargine and α-solanine in eight species of the genus Solanum.
Two triterpenoids ursolic acid (1) and lupeol (2) isolated and characterized from Eucalyptus tereticornis and Gentiana kurroo were subjected to in silico QSAR modeling and docking studies and later the predicted results were confirmed through in vivo experiments. QSAR modeling results showed that both the triterpenoids possess immunomodulatory and anti-inflammatory activity comparable to boswellic and cichoric acids, but were less active than levamisol. Docking results suggested that both the triterpenoids (1 and 2) showed immune modulatory and anti-inflammatory activity due to high binding affinity to human receptors viz.
View Article and Find Full Text PDFThis study was undertaken to ascertain the antipsychotic properties of Rauwolfia tetraphylla L. leaves and to isolate and characterize the antipsychotic constituents. Among the MeOH extract and some alkaloidal fractions at different pHs, the alkaloidal CHCl(3) fraction at pH-9 (2C) showed the highest antipsychotic activity against dopaminergic (DA-D(2)) and serotonergic (5-HT(2A)) receptors in-vitro and amphetamine induced hyperactive mouse model in-vivo.
View Article and Find Full Text PDFA rapid, simple, sensitive, gradient and reproducible, reverse-phase high-performance liquid chromatographic method was developed for the quantitative estimation of bioactive alkaloids, lysergol and chanoclavine in the seeds of Ipomoea muricata. The clavine alkaloid, lysergol, is a bioenhancer for the drugs and nutrients. The samples were analyzed by reverse-phase chromatography on a Waters spherisorb ODS2 column (250 × 4.
View Article and Find Full Text PDFpH-Zone-refining centrifugal-partition chromatography (CPC) was successfully applied in the separation of complex polar steroidal glycoalkaloids of close Rf values, directly from a crude extract of Solanum xanthocarpum. The experiment was performed with a two phase solvent system composed of ethyl acetate/butanol/water (1:4:5 by volume) where triethylamine (5 mM) was added to the upper organic mobile phase as an eluter and TFA (10 mM) to the aqueous stationary phase as a retainer. Separation of 1 g of crude extract over CPC resulted in two distinct pH-zones.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2009
Centrifugal partition chromatography in the pH-zone-refining mode was successfully applied to the separation of alkaloids, directly from a crude extract of Ipomoea muricata. The experiment was performed with a two-phase solvent system composed of methyl tert-butyl ether (MtBE)-acetonitrile-water (4:1:5, v/v) where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and trifluoroacetic acid (10 mM) to the aqueous mobile phase as an eluter. From 4 g of crude extract, 210 mg lysergol and 182 mg chanoclavine were obtained in 97% and 79.
View Article and Find Full Text PDF