Hierarchically structured micro-mesoporous ZSM-5/MCM-41 composite materials incorporating copper ions were synthesized using pre-synthesized ZSM-5 and cetyltrimethylammonium bromide (CTAB) as a template for forming the MCM-41 structure. The composites were characterized through powder X-ray diffraction, N adsorption-desorption, diffuse reflectance spectroscopy (UV-vis DRS), Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and energy dispersive X-ray spectroscopy. X-ray diffraction confirmed well-ordered ZSM-5 and MCM-41 structures, and UV-vis DRS showed successful copper ion incorporation.
View Article and Find Full Text PDFHydrothermal synthesis of MCM-48 molecular sieves featuring the incorporation of both iron and cobalt with Si/M ratios of 20, 40 and 80 (where M represents either iron or cobalt) was performed using tetraethyl orthosilicate as the silica source and cetyltrimethylammonium bromide as a template. To gain a comprehensive understanding of the synthesized materials, these were thoroughly characterized using various techniques, including XRD, XPS, UV-Vis (DRS), FT-IR, N adsorption-desorption analysis, SEM with EDX, TEM, TGA and NH-TPD analysis. XRD analysis revealed the presence of well-ordered MCM-48 structure in the metal-incorporated materials, while XPS and UV-Vis DRS confirmed the successful partial incorporation of metal ions precisely in their desired tetrahedral coordination within the framework.
View Article and Find Full Text PDF