Electrocatalytic water splitting to an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is believed to be the most important application for sustainable hydrogen generation. Being a four-electron, four-proton transfer process, the OER plays the main obstacle for the same. Therefore, designing an effective electrocatalyst to minimize the activation energy barrier for the OER is a research topic of prime importance.
View Article and Find Full Text PDFHydrogen is considered as one of the best alternatives to carbon-based fossil fuels as energy sources. Electrocatalytic water splitting is one of the finest and eco-friendly methods for the production of hydrogen as compared to all other methods such as stream reforming carbon, hydrolysis of metal hydrides, etc. However, the sluggish kinetics on both the half-cell reactions limits the large-scale production of hydrogen.
View Article and Find Full Text PDFHerein, a facile synthesis protocol for the development of directional alignment of CdSe quantum dots (QDs) on the surface of Copper benzene-1, 3, 5-tricarboxylate (CuBTC) metal-organic frameworks (MOFs) was proposed. The sensitization of CdSe QDs with MOFs offered enhancement of light-harvesting properties in the visible region of the solar spectrum due to the broad absorption band of CdSe QDs. As a photo-anode, it has generated current density of ˜20 mA/cm² at 1.
View Article and Find Full Text PDF