Publications by authors named "Anuji Abraham"

Article Synopsis
  • * The study introduces a new method using multinuclear solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy enhanced by dynamic nuclear polarization (DNP) to analyze the spatial arrangement of LNP components, specifically in siRNA-based drugs.
  • * Results reveal a structural model where siRNA resides in the core, targeting agents are positioned beneath the surface, and sugars are located above the lipid layer, highlighting the potential of this approach for broader applications in analyzing complex biological formulations.
View Article and Find Full Text PDF

Excipients are added to biopharmaceutical formulations to enhance protein stability and enable the development of robust formulations with acceptable physicochemical properties, but the mechanism by which they confer stability is not fully understood. Here, we aimed to elucidate the mechanism through direct experimental evidence of the binding affinity of an excipient to a monoclonal antibody (mAb), using saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic method. We ranked a series of excipients with respect to their dissociation constant (K) and nonspecific binding constants (N).

View Article and Find Full Text PDF

Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g.

View Article and Find Full Text PDF

The bioavailability of insoluble crystalline active pharmaceutical ingredients (APIs) can be enhanced by formulation as amorphous solid dispersions (ASDs). One of the key factors of ASD stabilization is the formation of drug-polymer interactions at the molecular level. Here, we used a range of multidimensional and multinuclear nuclear magnetic resonance (NMR) experiments to identify these interactions in amorphous acetaminophen (paracetamol)/hydroxypropylmethylcellulose acetyl succinate (HPMC-AS) ASDs at various drug loadings.

View Article and Find Full Text PDF

H Time-Domain Nuclear Magnetic Resonance (TD-NMR) is used to characterize solutions of antibodies that simulate biologic pharmaceutical formulations. The results from these measurements are compared with those from solutions in which the concentration or identity of the antibody has been altered. TD-NMR is shown to be very sensitive to differences in the amount of antibody in solution, with the ability to detect variations in as low as 2 mg/mL.

View Article and Find Full Text PDF

The objective of this study was to understand the impact of coating excipients on the chemical stability of active pan coated peliglitazar, which was prone to acid as well as base-catalyzed degradation. Four different coating formulations containing either polyvinyl alcohol (PVA) or hydroxypropyl methylcellulose (HPMC) as a coating polymer and triacetin (glycerol triacetate) or polyethylene glycol (PEG) as a plasticizer/detackifier were used for coating of peliglitazar in a perforated pan coater. Tablets of one-milligram strength were manufactured by suspending the drug in the coating suspension and spray coating onto inert core tablets.

View Article and Find Full Text PDF

Characterization of lipid based (SPC/GDO/HO) liquid crystal (LC) drug delivery system is non-trivial and highly complex, especially when multiple and intermediate phases are present. The phase behavior of such mixtures during hydration or delivery is still poorly understood and therefore, characterizing these systems is crucially important towards controlling their function and enhancing the understanding of their drug release behavior. Current work has established an easy way to identify liquid crystal phases and phase mixtures using deuterium (H) solid-state nuclear magnetic (NMR) spectroscopy under static conditions without disrupting the three dimensional structure and phases, as magic-angle spinning (MAS) could lead to disruption of the phases.

View Article and Find Full Text PDF

Hydroxypropylmethylcellulose (HPMC) acetyl succinate (HPMC-AS) is a key polymer used for the enablement of amorphous solid dispersions (ASDs) in oral solid dosage forms. Choice of the appropriate grade within the material is often made empirically by the manufacturer of small-scale formulations, followed by extensive real time stability. A key factor in understanding and predicting the performance of an ASD is related to the presence of hydrogen (or other) bonds between the polymer and active pharmaceutical ingredient (API), which will increase stability over the parameters captured by miscibility and predicted by the Gordon-Taylor equation.

View Article and Find Full Text PDF

Determining the moisture content in lyophilized solids is a fundamental step towards predicting the quality and stability of lyophilized products, but conventional methods are time-consuming, invasive, and destructive. High levels of residual moisture in a lyophilized product can lead to cake collapse, product degradation, and reduced shelf life. The aim of this study was to develop a fast, noninvasive, nondestructive, and inexpensive method for determining the moisture content in a lyophilized monoclonal antibody (mAb) formulation using benchtop low-field time-domain nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Understanding the behavior of tablet disintegrants is valuable in the development of pharmaceutical solid dosage formulations. In this study, high-resolution magnetic resonance imaging has been used to understand the hydration behavior of a series of commercial sodium starch glycolate (SSG) samples, providing robust estimates of tablet disintegration rate that could be correlated with physicochemical properties of the SSGs, such as the extent of phosphorus (P) cross-linking as obtained from infra-red spectroscopy. Furthermore, elemental analysis together with powder X-ray diffraction has been used to quantify the presence of carboxymethyl groups and salt impurities, which also contribute to the disintegration behavior.

View Article and Find Full Text PDF

A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD).

View Article and Find Full Text PDF

(1)H MAS NMR experiments were performed on gold nanoparticles coated with l-cysteine. The experiments show that l-cysteine molecules are zwitterions and support a structural model of cysteine forming two layers. The inner layer is composed of cysteine molecules chemisorbed to the gold surface via the sulfur atom.

View Article and Find Full Text PDF

The dehydration/desolvation of two hydrate solvates of the pharmaceutically important compound finasteride (namely, bisfinasteride monohydrate monotetrahydrofuran and bisfinasteride monohydrate mono-1,4-dioxane) has been studied by solid-state nuclear magnetic resonance, powder X-ray diffraction, thermogravimetric analysis (including coupling with mass spectrometry) and dynamic vapour sorption. The structure is unusual in that water holds the host finasteride molecules together by hydrogen bonding to form channels in which the solvent is sited. Whilst the solvent guest molecules are not strongly bound to the host, their presence is essential for structural stability.

View Article and Find Full Text PDF

In solids spinning at the magic angle, the indirect detection of single-quantum (SQ) and double-quantum (DQ) (14)N spectra (I=1) via spy nuclei S=1/2 such as protons can be achieved in the manner of heteronuclear single- or multiple-quantum correlation (HSQC or HMQC) spectroscopy. The HMQC method relies on the excitation of two-spin coherences of the type T(11)(I)T(11)(S) and T(21)(I)T(11)(S) at the beginning of the evolution interval t(1). The spectra obtained by Fourier transformation from t(1) to omega(1) may be broadened by the homogenous decay of the transverse terms of the spy nuclei S.

View Article and Find Full Text PDF

A combination of (27)Al magic-angle spinning (MAS)/multiple-quantum (MQ) MAS, and (27)Al-{(14)N} TRAnsfer of Population in DOuble-Resonance (TRAPDOR) nuclear magnetic resonance (NMR) was used to study aluminium environments in zeolite ZSM-5. (27)Al-{(14)N} TRAPDOR experiments, in combination with (14)N NMR were employed to show that the two tetrahedral peaks observed in the (27)Al MAS/3Q-MAS spectra of as-synthesized ZSM-5 are due to aluminium atoms occupying crystallographically inequivalent T-sites. A (13)C-{(27)Al} TRAPDOR experiment was used to study the template, tetrapropyl ammonium bromide (TPABr), in the three-dimensional pore system of ZSM-5.

View Article and Find Full Text PDF

The indirect detection of 14N spectra via protons in the manner of heteronuclear multiple-quantum correlation (HMQC) allows one to obtain single- (SQ) and double-quantum (DQ) 14N spectra in solids. A comparison of the SQ and DQ line widths as a function of temperature with simulations reveals motions in the tripeptide AAG with rates on the order of 107 s(-1) at 49 degrees C.

View Article and Find Full Text PDF

Coherence transfer from 'spy nuclei' such as (1)H or (13)C (S=1/2) was used to excite single- or double-quantum coherences of (14)N nuclei (I=1) while the S spins were aligned along the static field, in the manner of heteronuclear single-quantum correlation (HSQC) spectroscopy. For samples spinning at the magic angle, coherence transfer can be achieved through a combination of scalar couplings J(I,S) and second-order quadrupole-dipole cross-terms, also known as residual dipolar splittings (RDS). The second-order quadrupolar powder patterns in the two-dimensional spectra allow one to determine the quadrupolar parameters of (14)N in amino acids.

View Article and Find Full Text PDF

A combination of 27Al magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, 13C-1H CPMAS, and 13C-{27Al} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum isopropoxide, and aluminum tertiarybutoxide. Aluminum alkoxides exist as oligomers with aluminum in different coordinations. High-resolution 27Al MAS NMR experiments with high-spinning speed distinguished the aluminum atoms in different environments.

View Article and Find Full Text PDF