Publications by authors named "Anuja Prabhu"

Glycosylation of recombinant therapeutics like monoclonal antibodies (mAbs) is a critical quality attribute. N-glycans in mAbs are known to affect various effector functions, and thereby therapeutic use of such glycoproteins can depend on a particular glycoform profile to achieve desired efficacy. However, there are currently limited options for modulating the glycoform profile, which depend mainly on over-expression or knock-out of glycosyltransferase enzymes that can introduce or eliminate specific glycans but do not allow predictable glycoform modulation over a range of values.

View Article and Find Full Text PDF

To increase the productivity of rCHO cells, many cell engineering approaches have been demonstrated that over-express or knockout a specific gene to achieve increased titers. In this work, we present an alternate approach, based on the concept of evolutionary adaptation, to achieve cells with higher titers. rCHO cells, producing a monoclonal antibody, are adapted to ER-stress, by continuous culturing under increasing concentration of tunicamycin.

View Article and Find Full Text PDF

Glycosylation is an important product quality attribute of antibody biopharmaceuticals. It involves enzymatic addition of oligosaccharides on proteins by sequential action of glycosyltransferases and glycosidases in the endoplasmic reticulum and golgi. Some of these enzymes like galactosyltransferase and N-acetylglucosaminyltransferase-I require trace metal cofactors.

View Article and Find Full Text PDF

Trace element composition of culture medium can be altered to modulate glycoform of recombinant glycoproteins. In this study, we show that Zn supplementation at or above 100 μM decreases galactosylation of recombinant IgG expressed in Chinese Hamster Ovary cells. This decrease in galactosylation is not due to reduced galactosyltransferase expression.

View Article and Find Full Text PDF