Publications by authors named "Anuj Sehgal"

Article Synopsis
  • Macrophages and osteoclasts, which are crucial for bone health, rely on CSF1R signaling for their growth and survival.
  • Mutations in Csf1 and Csf1r lead to osteopetrosis, characterized by reduced osteoclasts and, consequently, impaired bone resorption.
  • A study in rats with Csf1r mutations showed that transferring healthy bone marrow helped restore bone development and highlighted the importance of osteal macrophages in normal bone growth.
View Article and Find Full Text PDF
Article Synopsis
  • A study on Csf1r knockout rats shows that a mutation in the Csf1r gene eliminates most tissue macrophages and affects growth and organ development, leading to early death.
  • Bone marrow transplantation (BMT) from wild-type rats can reverse these effects by restoring macrophage populations across various tissues without altering the recipient's blood cell populations.
  • Using a Csf1r-mApple reporter, the research tracked donor cells, revealing that while donor-derived macrophages repopulated tissues, other immune cells remained from the original recipient.
View Article and Find Full Text PDF

Purpose Of Review: The purpose of the review is to summarize the expression and function of CSF1R and its ligands in bone homeostasis and constraints on therapeutic targeting of this axis.

Recent Findings: Bone development and homeostasis depends upon interactions between mesenchymal cells and cells of the mononuclear phagocyte lineage (MPS), macrophages, and osteoclasts (OCL). The homeostatic interaction is mediated in part by the systemic and local production of growth factors, macrophage colony-stimulating factor (CSF1), and interleukin 34 (IL34) that interact with a receptor (CSF1R) expressed exclusively by MPS cells and their progenitors.

View Article and Find Full Text PDF

Amino acid substitutions in the kinase domain of the human CSF1R gene are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (pGlu631Lys; E631K) in the mouse Csf1r locus. Homozygous mutation (Csf1rE631K/E631K) phenocopied the Csf1r knockout, with prenatal mortality or severe postnatal growth retardation and hydrocephalus.

View Article and Find Full Text PDF

Mouse hematopoietic tissues contain abundant tissue-resident macrophages that support immunity, hematopoiesis, and bone homeostasis. A systematic strategy to characterize macrophage subsets in mouse bone marrow (BM), spleen, and lymph node unexpectedly reveals that macrophage surface marker staining emanates from membrane-bound subcellular remnants associated with unrelated cells. Intact macrophages are not present within these cell preparations.

View Article and Find Full Text PDF

Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms.

View Article and Find Full Text PDF

Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations.

View Article and Find Full Text PDF
Article Synopsis
  • The laboratory rat is increasingly used in studies of physiology, behavior, and human diseases due to its relevance and advantages over traditional models like mice.
  • The mononuclear phagocyte system (MPS), which includes cells like monocytes and macrophages, plays a critical role in development, immunity, and managing inflammation.
  • This article examines the current understanding and available research tools relating to the MPS in rats, highlighting their development, regulation, and diversity compared to existing knowledge from mouse studies.
View Article and Find Full Text PDF

Background: Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients.

View Article and Find Full Text PDF

The proliferation, differentiation, and survival of cells of the mononuclear phagocyte system (MPS; progenitors, monocytes, macrophages, and classical dendritic cells) are controlled by signals from the M-CSF receptor (CSF1R). Cells of the MPS lineage have been identified using numerous surface markers and transgenic reporters, but none is both universal and lineage restricted. In this article, we report the development and characterization of a CSF1R reporter mouse.

View Article and Find Full Text PDF

Macrophages are present in large numbers in every tissue in the body where they play critical roles in development and homeostasis. They exhibit remarkable phenotypic and functional diversity, underpinning their adaptation to specialized roles in each tissue niche. CSF1, signaling through the CSF1 receptor, which is restricted to monocyte-macrophage lineage cells in adults, is a critical growth factor controlling macrophage proliferation, differentiation, and many aspects of mature macrophage function.

View Article and Find Full Text PDF

Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However, these cultures lack the cellular diversity encountered in the intestinal epithelium, and the physiological relevance of monocultures of transformed cell lines is uncertain.

View Article and Find Full Text PDF

Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis.

View Article and Find Full Text PDF

Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain.

View Article and Find Full Text PDF

M cells reside within the follicle-associated epithelium (FAE) overlying the gut-associated lymphoid tissues. These unique phagocytic epithelial cells enable the mucosal immune system to sample antigens within the lumen of the intestine. The differentiation of M cells from uncommitted precursors in the FAE is dependent on the production of receptor activator of nuclear factor-κB ligand (RANKL) by subepithelial stromal cells.

View Article and Find Full Text PDF

The MacBlue transgenic mouse uses the Csf1r promoter and first intron to drive expression of gal4-VP16, which in turn drives a cointegrated gal4-responsive UAS-ECFP cassette. The Csf1r promoter region used contains a deletion of a 150 bp conserved region covering trophoblast and osteoclast-specific transcription start sites. In this study, we examined expression of the transgene in embryos and adult mice.

View Article and Find Full Text PDF

We have produced an Fc conjugate of colony-stimulating factor (CSF) 1 with an improved circulating half-life. CSF1-Fc retained its macrophage growth-promoting activity, and did not induce proinflammatory cytokines in vitro. Treatment with CSF1-Fc did not produce adverse effects in mice or pigs.

View Article and Find Full Text PDF

Bacterial and viral infections of the gastrointestinal tract are more common in the elderly and represent a major cause of morbidity and mortality. The mucosal immune system provides the first line of defence against pathogens acquired by ingestion and inhalation, but its function is adversely affected in the elderly. This aging-related decline in the immune function is termed immunosenescence and is associated with diminished abilities to generate protective immunity, reduced vaccine efficacy, increased incidence of cancer, inflammation and autoimmunity, and the impaired ability to generate tolerance to harmless antigens.

View Article and Find Full Text PDF

We investigated the role of CSF1R signaling in adult mice using prolonged treatment with anti-CSF1R antibody. Mutation of the CSF1 gene in the op/op mouse produces numerous developmental abnormalities. Mutation of the CSF1R has an even more penetrant phenotype, including perinatal lethality, because of the existence of a second ligand, IL-34.

View Article and Find Full Text PDF

The authors report two sibs with COFS syndrome and review the relevant literature in brief. They emphasize the importance of prenatal diagnosis in this syndrome that has many mimics.

View Article and Find Full Text PDF