Publications by authors named "Anubha Goyal"

This study demonstrates the formation of a flexible and free-standing carbon nanotube-copper oxide-poly(vinylidene fluoride) (CNT-Cu(2) O-PVDF) nanocomposite and its application as an electrode-separator material for Li-ion batteries. Binder-free hybrid electrodes are obtained by conformally coating CNTs with Cu(2) O via electrodeposition and then embedding the resulting architecture into a porous poly(vinylidene fluoride-hexafluoropropylene) PVDF-HFP-SiO(2) polymer electrolyte membrane. The synergistic presence of high-capacity transition metal oxides and conductive CNTs results in twice the reversible areal capacity of 2.

View Article and Find Full Text PDF

The adhesion and friction behavior of soft materials, including compliant brushes and hairs, depends on the temporal and spatial evolution of the interfaces in contact. For compliant nanofibrous materials, the actual contact area individual fibers make with surfaces depends on the preload applied upon contact. Using in situ microscopy observations of preloaded nanotube hairs, we show how nanotubes make cooperative contact with a surface by buckling and conforming to the surface topography.

View Article and Find Full Text PDF

We report that chlorosulfonic acid is a true solvent for a wide range of carbon nanotubes (CNTs), including single-walled (SWNTs), double-walled (DWNTs), multiwalled carbon nanotubes (MWNTs), and CNTs hundreds of micrometers long. The CNTs dissolve as individuals at low concentrations, as determined by cryo-TEM (cryogenic transmission electron microscopy), and form liquid-crystalline phases at high concentrations. The mechanism of dissolution is electrostatic stabilization through reversible protonation of the CNT side walls, as previously established for SWNTs.

View Article and Find Full Text PDF

We demonstrate a one-step method for synthesizing hybrid siloxane nanowires and metal (gold, silver) core-siloxane shell nanoparticles at room temperature by mixing a metal salt with an octadecylsilane solution. This method avoids the use of pre-synthesized nanoparticles and allows us to tailor the shape of the nanostructures.

View Article and Find Full Text PDF

We demonstrate a simple one-step method for synthesizing noble metal nanoparticle embedded free standing polydimethylsiloxane (PDMS) composite films. The process involves preparing a homogenous mixture of metal salt (silver, gold and platinum), silicone elastomer and the curing agent (hardener) followed by curing. During the curing process, the hardener crosslinks the elastomer and simultaneously reduces the metal salt to form nanoparticles.

View Article and Find Full Text PDF