Publications by authors named "Anu Swatantran"

Background: Carbon accounting in forests remains a large area of uncertainty in the global carbon cycle. Forest aboveground biomass is therefore an attribute of great interest for the forest management community, but the accuracy of aboveground biomass maps depends on the accuracy of the underlying field estimates used to calibrate models. These field estimates depend on the application of allometric models, which often have unknown and unreported uncertainties outside of the size class or environment in which they were developed.

View Article and Find Full Text PDF

Single photon lidar (SPL) is an innovative technology for rapid forest structure and terrain characterization over large areas. Here, we evaluate data from an SPL instrument - the High Resolution Quantum Lidar System (HRQLS) that was used to map the entirety of Garrett County in Maryland, USA (1700 km(2)). We develop novel approaches to filter solar noise to enable the derivation of forest canopy structure and ground elevation from SPL point clouds.

View Article and Find Full Text PDF

Forest inventories are commonly used to estimate total tree biomass of forest land even though they are not traditionally designed to measure biomass of trees outside forests (TOF). The consequence may be an inaccurate representation of all of the aboveground biomass, which propagates error to the outputs of spatial and process models that rely on the inventory data. An ideal approach to fill this data gap would be to integrate TOF measurements within a traditional forest inventory for a parsimonious estimate of total tree biomass.

View Article and Find Full Text PDF

Background: Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-derived biomass map over Maryland, USA.

View Article and Find Full Text PDF

Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness.

View Article and Find Full Text PDF

Background: Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored.

View Article and Find Full Text PDF