Objective: Recent studies suggest that excess dietary fructose contributes to metabolic dysfunction by promoting insulin resistance, de novo lipogenesis (DNL), and hepatic steatosis, thereby increasing the risk of obesity, type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH), and related comorbidities. Whether this metabolic dysfunction is driven by the excess dietary calories contained in fructose or whether fructose catabolism itself is uniquely pathogenic remains controversial. We sought to test whether a small molecule inhibitor of the primary fructose metabolizing enzyme ketohexokinase (KHK) can ameliorate the metabolic effects of fructose.
View Article and Find Full Text PDFInhibition of triacylglycerol (TAG) biosynthetic enzymes has been suggested as a promising strategy to treat insulin resistance, diabetes, dyslipidemia, and hepatic steatosis. Monoacylglycerol acyltransferase 3 (MGAT3) is an integral membrane enzyme that catalyzes the acylation of both monoacylglycerol (MAG) and diacylglycerol (DAG) to generate DAG and TAG, respectively. Herein, we report the discovery and characterization of the first selective small molecule inhibitors of MGAT3.
View Article and Find Full Text PDFObjectives: This study sought to determine whether known genetic, drug, dietary, compliance, and lifestyle factors affecting clopidogrel absorption and metabolism fully account for the variability in clopidogrel pharmacokinetics and pharmacodynamics.
Background: Platelet inhibition by clopidogrel is highly variable. Patients with reduced inhibition have increased risk for major adverse cardiovascular events.
Objectives: The aim of this study was to assess the effects of different proton pump inhibitors (PPIs) on the steady-state pharmacokinetics and pharmacodynamics of clopidogrel.
Background: Metabolism of clopidogrel requires cytochrome P450s (CYPs), including CYP2C19. However, PPIs may inhibit CYP2C19, potentially reducing the effectiveness of clopidogrel.
The etiology of acne is a complex process, and acne is one of the most common skin disorders affecting millions of people. The pathogenesis of acne is closely associated with the bacterium, Propionibacterium acnes which was previously known as Corynebacterium parvum. Both viable and non-viable P.
View Article and Find Full Text PDFOatmeal has been used for centuries as a soothing agent to relieve itch and irritation associated with various xerotic dermatoses; however few studies have sought to identify the active phytochemical(s) in oat that mediate this anti-inflammatory activity. Avenanthramides are phenolic compounds present in oats at approximately 300 parts per million (ppm) and have been reported to exhibit anti-oxidant activity in various cell-types. In the current study we investigated whether these compounds exert anti-inflammatory activity in the skin.
View Article and Find Full Text PDF