Publications by authors named "Anu Manhas"

An environmentally friendly, versatile multicomponent reaction for synthesizing isoxazol-5-one and pyrazol-3-one derivatives has been developed, utilizing a freshly prepared g-CNOH nanocomposite as a highly efficient catalyst at room temperature in aqueous environment. This innovative approach yielded all the desired products with exceptionally high yields and concise reaction durations. The catalyst was well characterized by FT-IR, XRD, SEM, EDAX, and TGA/DTA studies.

View Article and Find Full Text PDF

Cancer has been viewed as one of the deadliest diseases worldwide. Among various types of cancer, breast cancer is the most common type of cancer in women. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a promising druggable target and is overexpressed in cancerous cells, like, breast cancer.

View Article and Find Full Text PDF

Cancer is enlisted among the deadliest disease all over the world. The cyclin-dependent kinases 12 and 13 have been identified as cell cycle regulators. They conduct transcription and co-transcriptional processes by phosphorylating the C-terminal of RNA polymerase-II.

View Article and Find Full Text PDF

In the current work, multicomplex-based pharmacophore modeling was performed on the CDK9 enzyme. The generated models possess five, four, and six features, which were subjected to the validation process. Among them, six feature models were selected as representative models to conduct the virtual screening process.

View Article and Find Full Text PDF

The present pathway involves synthesis of isonicotinohydrazide derivatives using isoniazid and diversely substituted aldehydes in the presence of EtOH and catalytic amount of glycerol based carbon sulfonic acid catalyst. The developed pathway has so many merits like excellent yields (91-98%), short reaction time (4-10 min), easy reaction set up, no need of column chromatography, large substrate scope, easily recyclable and reusable catalyst. The synthesized compounds were screened for antimicrobial and anti-tubercular activity and it was observed that compounds possessed high biological potency against the Gram positive and Gram negative bacterial and fungal strains.

View Article and Find Full Text PDF

is counted as one of the deadly species causing malaria. In that respect, enoyl acyl carrier protein reductase is recognized as one of the attractive druggable targets for the identification of antimalarials. Thus, from the structural proteome of ENR, common feature pharmacophores were constructed.

View Article and Find Full Text PDF

In this study, multicomplex-based pharmacophore modeling was conducted on the structural proteome of the two states of CDK8 protein, that is, DMG-in and out. Three pharmacophores having six, five, and four features were selected as the representative models to conduct the virtual screening process using the prepared drug-like natural product database. The screened candidates were subjected to molecular docking studies on DMG-in (5XS2) and out (4F6U) conformation of the CDK8 protein.

View Article and Find Full Text PDF

DFT/TD-DFT methods were used to determine the fluoride anion sensing mechanism of 3',6'-Bis(tert-butyldimethylsilyloxy)spiro[benzo[f]chromene3,9'ffuorene], abbreviated as SP. The description of ring opening in the ground state of SP molecule and its isomerization in open form is presented. It was revealed from the study that in the ground state, SP is the most stable form in contrast with the isomer obtained in the open form.

View Article and Find Full Text PDF

Malaria is counted amongst the deadly disease caused by . Recently, plasmepsin-II enzyme has gained much importance as an attractive drug target for the exploration of antimalarials. Therefore, the common feature pharmacophore models were generated from the crystallized complexes of the plasmepsin-II proteome.

View Article and Find Full Text PDF

In the current contribution, a multicomplex-based pharmacophore modeling approach was employed on the structural proteome of orotidine-5-monophosphate decarboxylase enzyme (OMPDC). Among the constructed pharmacophore models, the representative hypotheses were selected as the primary filter to screen the molecules with the complementary features responsible for showing inhibition. Thereafter, auxiliary evaluations were performed on the screened candidates via drug-likeness and molecular docking studies.

View Article and Find Full Text PDF

In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies.

View Article and Find Full Text PDF

dihydrofolate reductase enzyme (DHFR) is counted as one of the attractive and validated antimalarial drug targets. However, the point mutations in the active site of wild-type DHFR have developed resistance against the well-known antifolates. Therefore, there is a dire need for the development of inhibitors that can inhibit both wild-type and mutant-type DHFR enzyme.

View Article and Find Full Text PDF

Drug resistance has made malaria an untreatable disease and therefore intensified the need for the development of new drugs and the identification of potential drug targets. In this pursuit, in silico efforts made in the past have not shown significant responses. Therefore, in the present work, the multicomplex-based pharmacophore modeling approach was employed to construct the pharmacophores of the 16 selected Plasmodium falciparum (Pf) targets.

View Article and Find Full Text PDF

In the current study, we have constructed receptor-based pharmacophore models by exploiting the Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) structural proteome. The derived models were subjected to a series of validation procedures to list the representative hypotheses that can be used for the screening of the Drug-like Diverse Database. A set of 739 molecules was retrieved and analyzed for the adsorption, distribution, metabolism, excretion and toxicity (ADMET) and drug-likeness attributes.

View Article and Find Full Text PDF

In the present work, multiple pharmacophore-based virtual screening of the SPECS natural product database was carried out to identify novel inhibitors of the validated biological target, InhA. The pharmacophore models were built from the five different groups of the co-crystallized ligands present within the active site. The generated models with the same features from each group were pooled and subjected to the test set validation, receiver-operator characteristic analysis and Güner-Henry studies.

View Article and Find Full Text PDF

Enormous efforts have been made in the past to identify novel scaffolds against the potential therapeutic target, Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH). Fourteen different organic molecules have been crystallized to understand the structural basis of the inhibition. However, the pharmacophoric studies carried out so far, have not exploited all the structural information simultaneously to identify the novel inhibitors.

View Article and Find Full Text PDF