Publications by authors named "Anu Liikanen"

Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland.

View Article and Find Full Text PDF

Phosphorus in surface runoff water may cause eutrophication of recipient water. This study clarifies the mechanisms of P removal in the wetland of Hovi, Finland, constructed on arable land in 1998. Before the construction, the surface soil (removed in the construction) and subsoil (the current wetland bottom) were analyzed for Al and Fe oxides (Al(ox) and Fe(ox)) reactive in P sorption, and for the distribution of P between various pools as well as for P exchange properties.

View Article and Find Full Text PDF

Eutrophication has decreased the O(2) content and increased the NH(4)(+) availability in freshwaters. These changes may affect carbon and nitrogen transformation processes and the production of CH(4) and N(2)O, which are important greenhouse gases. We studied release of CH(4) and N(2)O from a eutrophic lake sediment under varying O(2) and NH(4)(+) conditions.

View Article and Find Full Text PDF

We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere.

View Article and Find Full Text PDF

The release of nutrients from the sediment into the water column, i.e. internal nutrient loading, is an important problem in the restoration of eutrophied lakes.

View Article and Find Full Text PDF

In many freshwater ecosystems, the contents of NO3- and SO4(2-) have increased, whereas O2 has been depleted due to the increased acid and nutrient loads. These changes may affect carbon turnover and the dynamics of the major greenhouse gases CO2, CH4, and N2O. We studied the effects of O2, NO3-, and SO4(2-) availability on carbon mineralization, and fluxes of CO2, CH4, and N2O in the sediments of hyper-eutrophic Lake Kevätön, Finland.

View Article and Find Full Text PDF