Plant genetic diversity can affect ecosystem functioning by enhancing productivity, litter decomposition and resistance to natural enemies. However, the mechanisms underlying these effects remain poorly understood. We hypothesized that genetic diversity may influence ecosystem processes by eliciting functional plasticity among individuals encountering kin or genetically diverse neighbourhoods.
View Article and Find Full Text PDFPlant functional traits can vary widely as a result of phenotypic plasticity to abiotic conditions. Trait variation may also reflect responses to the identity of neighbours, although not all species are equally responsive to their biotic surroundings. We hypothesized that responses to neighbours are shaped by spatial community patterns and resulting variability in neighbour composition.
View Article and Find Full Text PDFSome plant species are able to distinguish between neighbours of different genetic identity and attempt to pre-empt resources through root proliferation in the presence of unrelated competitors, but avoid competition with kin. However, studies on neighbour recognition have met with some scepticism because the mechanisms by which plants identify their neighbours have remained unclear. In order to test whether root exudates could mediate neighbour recognition in plants, we performed a glasshouse experiment in which plants of Deschampsia caespitosa were subjected to root exudates collected from potential neighbours of different genetic identities, including siblings and individuals belonging to the same or a different population or species.
View Article and Find Full Text PDF