Numerous inwardly rectifying potassium (Kir) channels possess an aromatic residue in the helix bundle crossing region, forming the narrowest pore constriction in crystal structures. However, the role of the Kir channel bundle crossing as a functional gate remains uncertain. We report a unique phenotype of Kir6.
View Article and Find Full Text PDFPotassium channels at the cardiomyocyte surface must eventually be internalized and degraded, and changes in cardiac potassium channel expression are known to occur during myocardial disease. It is not known which trafficking pathways are involved in the control of cardiac potassium channel surface expression, and it is not clear whether all cardiac potassium channels follow a common pathway or many pathways. In the present study we have surveyed the role of retrograde microtubule-dependent transport in modulating the surface expression of several cardiac potassium channels in ventricular myocytes and heterologous cells.
View Article and Find Full Text PDFIn this article we have investigated the mechanisms by which retrograde trafficking regulates the surface expression of the voltage-gated potassium channel, Kv1.5. Overexpression of p50/dynamitin, known to disrupt the dynein-dynactin complex responsible for carrying vesicle cargo, substantially increased outward K+ currents in HEK293 cells stably expressing Kv1.
View Article and Find Full Text PDF