We explored opportunities for personalized and predictive health care by collecting serial clinical measurements, health surveys, genomics, proteomics, autoantibodies, metabolomics, and gut microbiome data from 96 individuals who participated in a data-driven health coaching program over a 16-month period with continuous digital monitoring of activity and sleep. We generated a resource of >20,000 biological samples from this study and a compendium of >53 million primary data points for 558,032 distinct features. Multiomics factor analysis revealed distinct and independent molecular factors linked to obesity, diabetes, liver function, cardiovascular disease, inflammation, immunity, exercise, diet, and hormonal effects.
View Article and Find Full Text PDF