Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA).
View Article and Find Full Text PDFPurpose: Previous studies have demonstrated the ability of retinal cells derived from human embryonic stem cells (hESCs) to survive, integrate into the host retina, and mediate light responses in murine mouse models. Our aim is to determine whether these cells can also survive and integrate into the retina of a nonhuman primate, following transplantation into the subretinal space.
Methods: hESCs were differentiated toward retinal neuronal fates using our previously published technique and cultured for 60 to 70 days.
During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course.
View Article and Find Full Text PDFOver the last few years, numerous studies have introduced strategies for the generation of neuronal populations from embryonic stem cells. These techniques are valuable both in the study of early neurogenesis and in the generation of an unlimited source of donor cells for replacement therapies. We have developed a protocol to direct mouse and human embryonic stem cells to retinal fates by using the current model of eye specification.
View Article and Find Full Text PDF