Repetitive synaptic stimulation can induce different forms of synaptic plasticity but may also limit the robustness of synaptic transmission by exhausting key resources. Little is known about how synaptic transmission is stabilized after high-frequency stimulation. In the present study, we observed that tetanic stimulation of the Drosophila neuromuscular junction (NMJ) decreases quantal content, release-ready vesicle pool size and synaptic vesicle density for minutes after stimulation.
View Article and Find Full Text PDFPresynaptic homeostatic plasticity (PHP) stabilizes synaptic transmission by counteracting impaired neurotransmitter receptor function through neurotransmitter release potentiation. PHP is thought to be triggered by impaired receptor function and to involve a stereotypic signaling pathway. However, here we demonstrate that different receptor perturbations that similarly reduce synaptic transmission result in different responses at the Drosophila neuromuscular junction.
View Article and Find Full Text PDFNeuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers use a variety of different software tools in the model building and analysis process. Here we focus on the scale of biochemical pathways, which is one of the main objects of study in systems biology.
View Article and Find Full Text PDFLong-term potentiation and depression of synaptic activity in response to stimuli is a key factor in reinforcement learning. Strengthening of the corticostriatal synapses depends on the second messenger cAMP, whose synthesis is catalysed by the enzyme adenylyl cyclase 5 (AC5), which is itself regulated by the stimulatory Gαolf and inhibitory Gαi proteins. AC isoforms have been suggested to act as coincidence detectors, promoting cellular responses only when convergent regulatory signals occur close in time.
View Article and Find Full Text PDFThe opposing action of dopamine and acetylcholine has long been known to play an important role in basal ganglia physiology. However, the quantitative analysis of dopamine and acetylcholine signal interaction has been difficult to perform in the native context because the striatum comprises mainly two subtypes of medium-sized spiny neurons (MSNs) on which these neuromodulators exert different actions. We used biosensor imaging in live brain slices of dorsomedial striatum to monitor changes in intracellular cAMP at the level of individual MSNs.
View Article and Find Full Text PDFMotivation: Dynamical models describing intracellular phenomena are increasing in size and complexity as more information is obtained from experiments. These models are often over-parameterized with respect to the quantitative data used for parameter estimation, resulting in uncertainty in the individual parameter estimates as well as in the predictions made from the model. Here we combine Bayesian analysis with global sensitivity analysis (GSA) in order to give better informed predictions; to point out weaker parts of the model that are important targets for further experiments, as well as to give guidance on parameters that are essential in distinguishing different qualitative output behaviours.
View Article and Find Full Text PDFAlthough it is known that protein kinase A (PKA) in the nucleus regulates gene expression, the specificities of nuclear PKA signaling remain poorly understood. Here, we combined computational modeling and live-cell imaging of PKA-dependent phosphorylation in mouse brain slices to investigate how transient dopamine signals are translated into nuclear PKA activity in cortical pyramidal neurons and striatal medium spiny neurons. We observed that the nuclear PKA signal in striatal neurons featured an ultrasensitive responsiveness, associated with fast all-or-none responses, which is not consistent with the commonly accepted theory of a slow and passive diffusion of catalytic PKA in the nucleus.
View Article and Find Full Text PDFThe basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors.
View Article and Find Full Text PDFIn reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration.
View Article and Find Full Text PDFMotivation: In the post-genomic era, automatic annotation of protein sequences using computational homology-based methods is highly desirable. However, often protein sequences diverge to an extent where detection of homology and automatic annotation transfer is not straightforward. Sophisticated approaches to detect such distant relationships are needed.
View Article and Find Full Text PDFStriatum, which is the input nucleus of the basal ganglia, integrates cortical and thalamic glutamatergic inputs with dopaminergic afferents from the substantia nigra pars compacta. The combination of dopamine and glutamate strongly modulates molecular and cellular properties of striatal neurons and the strength of corticostriatal synapses. These actions are performed via intracellular signaling networks, containing several intertwined feedback loops.
View Article and Find Full Text PDFAnalysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural differences which are functionally relevant.
View Article and Find Full Text PDFBackground: Coiled-coils are found in different proteins like transcription factors, myosin tail domain, tropomyosin, leucine zippers and kinesins. Analysis of various structures containing coiled-coils has revealed the importance of electrostatic and hydrophobic interactions. In such domains, regions of different strength of interactions need to be identified since they could be biologically relevant.
View Article and Find Full Text PDFAccurate structure-based sequence alignments of distantly related proteins are crucial in gaining insight about protein domains that belong to a superfamily. The PASS2 database provides alignments of proteins related at the superfamily level and are characterized by low sequence identity. We thus report an automated, updated version of the superfamily alignment database known as PASS2.
View Article and Find Full Text PDF