Publications by authors named "Antton Babaze"

When an organic molecule is placed inside a plasmonic cavity formed by two metallic nanoparticles (MNP) under illumination, the electronic excitations of the molecule couple to the plasmonic electromagnetic modes of the cavity, inducing new hybrid light-matter states called polaritons. Atomistic ab initio methods accurately describe the coupling between MNPs and molecules at the nanometer scale and allow us to analyze how atomistic features influence the interaction. In this work, we study the optical response of a porphine molecule coupled to a silver nanoparticle dimer from first principles, within the linear-response time-dependent density functional theory framework, using the recently developed Python Numeric Atomic Orbitals implementation to compute the optical excitations.

View Article and Find Full Text PDF

Understanding and mastering quantum electrodynamics phenomena is essential to the development of quantum nanophotonics applications. While tailoring of the local vacuum field has been widely used to tune the luminescence rate and directionality of a quantum emitter, its impact on their transition energies is barely investigated and exploited. Fluorescent defects in nanosized diamonds constitute an attractive nanophotonic platform to investigate the Lamb shift of an emitter embedded in a dielectric nanostructure with high refractive index.

View Article and Find Full Text PDF

The spin and orbital angular momentum carried by electromagnetic pulses open new perspectives to control nonlinear processes in light-matter interactions, with a wealth of potential applications. In this work, we use time-dependent density functional theory (TDDFT) to study the nonlinear optical response of a free-electron plasmonic nanowire to an intense, circularly polarized electromagnetic pulse. In contrast to the well-studied case of the linear polarization, we find that the th harmonic optical response to circularly polarized light is determined by the multipole moment of order of the induced nonlinear charge density that rotates around the nanowire axis at the fundamental frequency.

View Article and Find Full Text PDF

The surface-response formalism (SRF), where quantum surface-response corrections are incorporated into the classical electromagnetic theory the Feibelman parameters, serves to address quantum effects in the optical response of metallic nanostructures. So far, the Feibelman parameters have been typically obtained from many-body calculations performed in the long-wavelength approximation, which neglects the nonlocality of the optical response in the direction parallel to the metal-dielectric interface, thus preventing to address the optical response of systems with extreme field confinement. To improve this approach, we introduce a SRF based on a general Feibelman parameter (, ), which is a function of both the excitation frequency, , and the wavenumber parallel to the planar metal surface, .

View Article and Find Full Text PDF

We use time-dependent density functional theory (TDDFT) within the jellium model to study the impact of quantum-mechanical effects on the self-interaction Green's function that governs the electromagnetic interaction between quantum emitters and plasmonic metallic nanoantennas. A semiclassical model based on the Feibelman parameters, which incorporates quantum surface-response corrections into an otherwise classical description, confirms surface-enabled Landau damping and the spill out of the induced charges as the dominant quantum mechanisms strongly affecting the nanoantenna-emitter interaction. These quantum effects produce a redshift and broadening of plasmonic resonances not present in classical theories that consider a local dielectric response of the metals.

View Article and Find Full Text PDF

The optical response of a system formed by a quantum emitter and a plasmonic gap nanoantenna is theoretically addressed within the frameworks of classical electrodynamics and the time-dependent density functional theory (TDDFT). A fully quantum many-body description of the electron dynamics within TDDFT allows for analyzing the effect of electronic coupling between the emitter and the nanoantenna, usually ignored in classical descriptions of the optical response. We show that the hybridization between the electronic states of the quantum emitter and those of the metallic nanoparticles strongly modifies the energy, the width, and the very existence of the optical resonances of the coupled system.

View Article and Find Full Text PDF