Background: Infections caused by soil-transmitted helminths (STHs) are the most prevalent neglected tropical diseases and result in a major disease burden in low- and middle-income countries, especially in school-aged children. Improved diagnostic methods, especially for light intensity infections, are needed for efficient, control and elimination of STHs as a public health problem, as well as STH management. Image-based artificial intelligence (AI) has shown promise for STH detection in digitized stool samples.
View Article and Find Full Text PDFBackground: Malaria remains a major global health problem with a need for improved field-usable diagnostic tests. We have developed a portable, low-cost digital microscope scanner, capable of both brightfield and fluorescence imaging. Here, we used the instrument to digitize blood smears, and applied deep learning (DL) algorithms to detect Plasmodium falciparum parasites.
View Article and Find Full Text PDFBackground: Detection of lymph node metastases is essential in breast cancer diagnostics and staging, affecting treatment and prognosis. Intraoperative microscopy analysis of sentinel lymph node frozen sections is standard for detection of axillary metastases but requires access to a pathologist for sample analysis. Remote analysis of digitized samples is an alternative solution but is limited by the requirement for high-end slide scanning equipment.
View Article and Find Full Text PDFBackground: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases.
View Article and Find Full Text PDFIntroduction: A significant barrier to medical diagnostics in low-resource environments is the lack of medical care and equipment. Here we present a low-cost, cloud-connected digital microscope for applications at the point-of-care. We evaluate the performance of the device in the digital assessment of estrogen receptor-alpha (ER) expression in breast cancer samples.
View Article and Find Full Text PDF