Purpose: We present a simulation-based feasibility study of electrical impedance tomography (EIT) for continuous bedside monitoring of intracerebral hemorrhages (ICH) and detection of secondary hemorrhages.
Approach: We simulated EIT measurements for six different hemorrhage sizes at two different hemorrhage locations using an anatomically detailed computational head model. Using this dataset, we test the ICH monitoring and detection performance of our tailor-made, patient-specific stroke-monitoring algorithm that utilizes a novel combination of nonlinear region-of-interest difference imaging, parallel level sets regularization and a prior-conditioned least squares algorithm.
In the above paper [1] there are two errors which we correct here. An important reference was omitted.
View Article and Find Full Text PDFObjective: Electrical impedance tomography (EIT) has been proposed as a novel tool for diagnosing stroke. However, so far, the clinical feasibility is unresolved. In this study, we aim to investigate the need for accurate head modeling in EIT and how the inhomogeneities of the head contribute to the EIT measurement and affect its feasibility in monitoring the progression of a hemorrhagic stroke.
View Article and Find Full Text PDFObjectives: Stability of bone splitting sternotomy is essential for normal healing after open cardiac surgery. Mechanical vibration transmittance may offer a means for early detection of separation of bone (diastasis) in the sternotomy and prevent further complications. This article describes the technical implementation and validation of vibration analysis-based prototype device built for measuring sternal bone connectivity after sternotomy.
View Article and Find Full Text PDF