Protein and peptide cages are nanoscale containers, which are of particular interest in nanoscience due to their well-defined dimensions and enclosed central cavities that can be filled with material that is protected from the outside environment. Ferritin is a typical example of protein cage, formed by 24 polypeptide chains that self-assemble into a hollow, roughly spherical protein cage with external and internal diameters of approximately 12 nm and 8 nm, respectively. The interior cavity of ferritin provides a unique reaction vessel to carry out reactions separated from the exterior environment.
View Article and Find Full Text PDFVirus contamination of water is a threat to human health in many countries. Current solutions for inactivation of viruses mainly rely on environmentally burdensome chemical oxidation or energy-intensive ultraviolet irradiation, which may create toxic secondary products. Here, we show that renewable plant biomass-sourced colloidal lignin particles (CLPs) can be used as agglomeration agents to facilitate removal of viruses from water.
View Article and Find Full Text PDFWe synthesized permethylated maltoheptaose oligosaccharides, whose both ends, untrivially, have been functionalized with supramolecular binders 2-ureido-4[1H]-pyrimidinones (UPy) after single ring-opening of β-cyclodextrin counterpart. In 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), they show lyotropic liquid crystallinity. In the dried state they allow linear saccharide-based supramolecular polymers by UPy-dimerization.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2020
Protein capsids are specialized and versatile natural macromolecules with exceptional properties. Their homogenous, spherical, rod-like or toroidal geometry, and spatially directed functionalities make them intriguing building blocks for self-assembled nanostructures. High degrees of functionality and modifiability allow for their assembly via non-covalent interactions, such as electrostatic and coordination bonding, enabling controlled self-assembly into higher-order structures.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2019
Protein cages are interesting building blocks for functional supramolecular assemblies. A multi-responsive system composed of apoferritin and thermo-responsive block copolymers complexed through electrostatic interactions is described here. The polymers are linear chains with cationic and thermo-responsive blocks, and both diblock and triblock copolymers are studied.
View Article and Find Full Text PDFDevelopment of protein cages for encapsulation of active enzyme cargoes and their subsequent arrangement into a controllable three-dimensional array is highly desirable. However, cargo capture is typically challenging because of difficulties in achieving reversible assembly/disassembly of protein cages in mild conditions. Herein we show that by using an unusual ferritin cage protein that undergoes triggerable assembly under mild conditions, we can achieve reversible filling with protein cargoes including an active enzyme.
View Article and Find Full Text PDFThe arrangements of metal nanoparticles into spatially ordered structures is still challenging, but DNA-based nanostructures have proven to be feasible building blocks in directing the higher-ordered arrangements of nanoparticles. However, an additional DNA functionalization of the particles is often required to link them to the DNA frames. Herein, we show that ordered 3D metal nanoparticle superlattices could be formed also by plainly employing electrostatic interactions between particles and DNA nanostructures.
View Article and Find Full Text PDFSelf-assembly is a convenient process to arrange complex biomolecules into large hierarchically ordered structures. Electrostatic attraction between the building blocks is a particularly interesting driving force for the assembly process, as it is easily tunable and reversible. Large biomolecules with high surface charge density, such as proteins and protein cages, are very promising building blocks due to their uniform size and shape.
View Article and Find Full Text PDFCyclophanes are macrocyclic supramolecular hosts famous for their ability to bind atomic or molecular guests via noncovalent interactions within their well-defined cavities. In a similar way, porous crystalline networks, such as metal-organic frameworks, can create microenvironments that enable controlled guest binding in the solid state. Both types of materials often consist of synthetic components, and they have been developed within separate research fields.
View Article and Find Full Text PDF