Publications by authors named "Antti Hellsten"

COVID-19 has highlighted the need for indoor risk-reduction strategies. Our aim is to provide information about the virus dispersion and attempts to reduce the infection risk. Indoor transmission was studied simulating a dining situation in a restaurant.

View Article and Find Full Text PDF

High-resolution large-eddy simulation (LES) is exploited to study indoor air turbulence and its effect on the dispersion of respiratory virus-laden aerosols and subsequent transmission risks. The LES modeling is carried out with unprecedented accuracy and subsequent analysis with novel mathematical robustness. To substantiate the physical relevance of the LES model under realistic ventilation conditions, a set of experimental aerosol concentration measurements are carried out, and their results are used to successfully validate the LES model results.

View Article and Find Full Text PDF

We provide research findings on the physics of aerosol and droplet dispersion relevant to the hypothesized aerosol transmission of SARS-CoV-2 during the current pandemic. We utilize physics-based modeling at different levels of complexity, along with previous literature on coronaviruses, to investigate the possibility of airborne transmission. The previous literature, our 0D-3D simulations by various physics-based models, and theoretical calculations, indicate that the typical size range of speech and cough originated droplets ( ) allows lingering in the air for ) so that they could be inhaled.

View Article and Find Full Text PDF