East Coast Fever (ECF), caused by , is a major constraint to improved livestock keeping in east and central Africa, including Zambia. To understand the dynamics and determine the candidates for immunization in Zambia's Chongwe and Chisamba districts, a combination of Tp1 and Tp2 gene sequencing and microsatellite analysis using nine markers was conducted from which an abundance of Muguga, Kiambu, Serengeti and Katete epitopes in the field samples was obtained. Phylogenetic analysis showed six (Tp1) and three (Tp2) clusters with an absence of geographical origin clustering.
View Article and Find Full Text PDFTheileria parva (T. parva) is a protozoan parasite that causes East Coast fever (ECF). The disease is endemic in Burundi and is a major constraint to livestock development.
View Article and Find Full Text PDFEast Coast fever (ECF) is an often fatal, economically important cattle disease that predominantly affects eastern, central, and southern Africa. ECF is controlled through vaccination by means of simultaneous injection of oxytetracycline and cryogenically preserved stabilate containing live, disease-causing parasites. Storage and transportation of the stabilate requires liquid nitrogen, a commodity that is commonly unreliable in low-resource settings.
View Article and Find Full Text PDFBackground: East Coast fever (ECF) caused by Theileria parva is endemic in Rwanda. In this study, the antigenic and genetic diversity of T. parva coupled with immunization and field challenge were undertaken to provide evidence for the introduction of ECF immunization in Rwanda.
View Article and Find Full Text PDFHeterologous priming-boosting vaccination regimens involving priming with plasmid DNA antigen constructs and inoculating (boosting) with the same recombinant antigen expressed in replication-attenuated poxviruses have recently been demonstrated to induce immunity, based on CD4(+)- and CD8(+)-T-cell responses, against several diseases in both rodents and primates. We show that similar priming-boosting vaccination strategies using the 85A antigen of Mycobacterium tuberculosis are effective in inducing antigen-specific gamma interferon-secreting CD4(+) and CD8(+) T cells, detected by a bovine enzyme-linked immunospot assay, in Bos indicus cattle. T-cell responses induced by priming with either plasmid DNA or fowlpox virus 85A constructs were enhanced by boosting with modified vaccinia virus Ankara expressing the same antigen administered intradermally.
View Article and Find Full Text PDF