Publications by authors named "Antony C S Chan"

Due to the chromatic dispersion properties inherent in all optical materials, even the best-designed multispectral objective will exhibit residual chromatic aberration. Here, we demonstrate a multispectral microscope with a computational scheme based on the Fourier ptychographic microscopy (FPM) to correct these effects in order to render undistorted, in-focus images. The microscope consists of 4 spectral channels ranging from 405 nm to 1552 nm.

View Article and Find Full Text PDF

We report the implementation of a parallel microscopy system (96 Eyes) that is capable of simultaneous imaging of all wells on a 96-well plate. The optical system consists of 96 microscopy units, where each unit is made out of a four element objective, made through a molded injection process, and a low cost CMOS camera chip. By illuminating the sample with angle varying light and applying Fourier Ptychography, we can improve the effective brightfield imaging numerical aperture of the objectives from 0.

View Article and Find Full Text PDF

Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate - hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process.

View Article and Find Full Text PDF

Quantitative phase imaging (QPI) has been proven to be a powerful tool for label-free characterization of biological specimens. However, the imaging speed, largely limited by the image sensor technology, impedes its utility in applications where high-throughput screening and efficient big-data analysis are mandated. We here demonstrate interferometric time-stretch (iTS) microscopy for delivering ultrafast quantitative phase cellular and tissue imaging at an imaging line-scan rate >20 MHz—orders-of-magnitude faster than conventional QPI.

View Article and Find Full Text PDF

Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity--a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec.

View Article and Find Full Text PDF