Publications by authors named "Antonius Van Kessel"

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis.

View Article and Find Full Text PDF

The central mechanism in ferroptosis linking lipid hydroperoxide accumulation with cell death remains poorly understood. Although lipid hydroperoxides are known to break down to reactive lipid-derived electrophiles (LDEs), the ability of cells to detoxify increasing LDE levels during ferroptosis has not been studied. Here, we developed an assay (ElectrophileQ) correlating the cellular retention excretion of a fluorogenic lipophilic electrophile (AcroB) that enables live-cell assessment of the glutathione-mediated LDE conjugation and adduct export steps of the LDE detoxification pathway.

View Article and Find Full Text PDF

We report a chemically tuned fluorogenic electrophile designed to conduct live-cell super-resolution imaging by exploiting its stochastic reversible alkylation reaction with cellular nucleophiles. Consisting of a lipophilic BODIPY fluorophore tethered to an electrophilic cyanoacrylate warhead, the new probe cyanoAcroB remains nonemissive due to internal conversion along the cyanoacrylate moiety. Intermittent fluorescence occurs following thiolate Michael addition to the probe, followed by retro-Michael reaction, tuned by the cyano moiety in the acrylate warhead and BODIPY decoration.

View Article and Find Full Text PDF

"Antioxidant activity" is an often invoked, but generally poorly characterized, molecular property. Several assays are available to determine antioxidant activity, the most popular of which is based upon the ability of a putative antioxidant to reduce 2,2-diphenyl-1-picrylhydrazyl. Here, we show that the results of this assay do not correlate with the potency of putative antioxidants as inhibitors of ferroptosis, the oxidative cell death modality associated with (phospho)lipid peroxidation.

View Article and Find Full Text PDF

Here we report the activatable photosensitizer BromoAcroB, a brominated BODIPY dye incorporating a reactive acrolein warhead. The acrolein moiety serves as an intramolecular switch, deactivating the BODIPY dye in its singlet and triplet excited states via internal conversion. Thiolate addition to this moiety disables the intramolecular quenching mechanism restoring the photosensitizing properties of the parent dye, characterized by a quantum yield of singlet oxygen photosensitization of 0.

View Article and Find Full Text PDF

Sterically-hindered nitroxides such as 2,2,6,6-tetramethylpiperidin- N-oxyl (TEMPO) have long been ascribed antioxidant activity that is thought to underlie their chemopreventive and anti-aging properties. However, the most commonly invoked reactions in this context-combination with an alkyl radical to give a redox inactive alkoxyamine or catalysis of superoxide dismutation-are unlikely to be relevant under (most) physiological conditions. Herein, we characterize the kinetics and mechanisms of the reactions of TEMPO, as well as an N-arylnitroxide and an N, N-diarylnitroxide, with alkylperoxyl radicals, the propagating species in lipid peroxidation.

View Article and Find Full Text PDF

The regulation of biofilm development requires multiple mechanisms and pathways, but it is not fully understood how these are integrated. Small RNA post-transcriptional regulators are a strong candidate as a regulatory mechanism of biofilm formation. More than 200 small RNAs in the P.

View Article and Find Full Text PDF

Inhibited autoxidations-monitored either by O2 consumption or hydroperoxide formation-are the most reliable way to obtain kinetic and stoichiometric information on the activity of radical-trapping antioxidants (RTAs). While many comparatively simple "antioxidant assays" (e.g.

View Article and Find Full Text PDF