Synaptic dysfunction may underlie the pathophysiology of Parkinson's disease (PD), a presently incurable condition characterized by motor and cognitive symptoms. Here, we used quantitative proteomics to study the role of PHD Finger Protein 8 (PHF8), a histone demethylating enzyme found to be mutated in X-linked intellectual disability and identified as a genetic marker of PD, in regulating the expression of PD-related synaptic plasticity proteins. Amongst the list of proteins found to be affected by PHF8 knockdown were Parkinson's-disease-associated SNCA (alpha synuclein) and PD-linked genes DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1).
View Article and Find Full Text PDFThe activity-dependent expression of immediate-early genes (IEGs) has been utilised to label memory traces. However, their roles in engram specification are incompletely understood. Outstanding questions remain as to whether expression of IEGs can interplay with network properties such as functional connectivity and also if neurons expressing different IEGs are functionally distinct.
View Article and Find Full Text PDFHumans have a large capacity of recognition memory (Dudai, 1997), a fundamental property of higher-order brain functions such as abstraction and generalization (Vogt and Magnussen, 2007). Familiarity is the first step towards recognition memory. We have previously demonstrated using unsupervised neural network simulations that familiarity detection of complex patterns emerges in generic cortical microcircuits with bidirectional synaptic plasticity.
View Article and Find Full Text PDFBacopa monnieri is a plant used as a nootropic in Ayurveda, a 5000-year-old system of traditional Indian medicine. Although both animal and clinical studies supported its role as a memory enhancer, the molecular and cellular mechanism underlying Bacopa's nootropic action are not understood. In this study, we used deep sequencing (RNA-Seq) to identify the transcriptome changes upon Bacopa treatment on SH-SY5Y human neuroblastoma cells.
View Article and Find Full Text PDFHumans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications.
View Article and Find Full Text PDFAlthough mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS), it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN)-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs.
View Article and Find Full Text PDFThe fact that Parkinson's disease (PD) can arise from numerous genetic mutations suggests a unifying molecular pathology underlying the various genetic backgrounds. To address this hypothesis, we took an integrated approach utilizing in vitro disease modeling and comprehensive transcriptome profiling to advance our understanding of PD progression and the concordant downstream signaling pathways across divergent genetic predispositions. To model PD in vitro, we generated neurons harboring disease-causing mutations from patient-specific, induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFCellular functions of the Golgi are determined by the unique distribution of its resident proteins. Currently, electron microscopy is required for the localization of a Golgi protein at the sub-Golgi level. We developed a quantitative sub-Golgi localization method based on centers of fluorescence masses of nocodazole-induced Golgi ministacks under conventional optical microscopy.
View Article and Find Full Text PDFChromatin modification is an important epigenetic mechanism underlying neuroplasticity. Histone methylation and acetylation have both been shown to modulate gene expression, but the machinery responsible for mediating these changes in neurons has remained elusive. Here we identify a chromatin-modifying complex containing the histone demethylase PHF8 and the acetyltransferase TIP60 as a key regulator of the activity-induced expression of Arc, an important mediator of synaptic plasticity.
View Article and Find Full Text PDFArc is an immediate-early gene whose genetic ablation selectively abrogates long-term memory, indicating a critical role in memory consolidation. Although Arc protein is found at synapses, it also localizes to the neuronal nucleus, where its function is less understood. Nuclear Arc forms a complex with the β-spectrin isoform βSpIVΣ5 and associates with PML bodies, sites of epigenetic regulation of gene expression.
View Article and Find Full Text PDFIn both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus.
View Article and Find Full Text PDFThe ability to process complex spatiotemporal information is a fundamental process underlying the behavior of all higher organisms. However, how the brain processes information in the temporal domain remains incompletely understood. We have explored the spatiotemporal information-processing capability of networks formed from dissociated rat E18 cortical neurons growing in culture.
View Article and Find Full Text PDFShort-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent.
View Article and Find Full Text PDFThe Liquid State Machine (LSM) is a biologically plausible computational neural network model for real-time computing on time-varying inputs, whose structure and function were inspired by the properties of neocortical columns in the central nervous system of mammals. The LSM uses spiking neurons connected by dynamic synapses to project inputs into a high dimensional feature space, allowing classification of inputs by linear separation, similar to the approach used in support vector machines (SVMs). The performance of a LSM neural network model on pattern recognition tasks mainly depends on its parameter settings.
View Article and Find Full Text PDFMetastasis is the main cause of cancer mortality. During this process, cancer cells dislodge from a primary tumor, enter the circulation and form secondary tumors in distal organs. It is poorly understood how these cells manage to cross the tight syncytium of endothelial cells that lines the capillaries.
View Article and Find Full Text PDFExperimental studies of neuronal cultures have revealed a wide variety of spiking network activity ranging from sparse, asynchronous firing to distinct, network-wide synchronous bursting. However, the functional mechanisms driving these observed firing patterns are not well understood. In this work, we develop an in silico network of cortical neurons based on known features of similar in vitro networks.
View Article and Find Full Text PDFN-Methyl-D-aspartate (NMDA) receptors play a critical role in both development of the central nervous system and adult neuroplasticity. However, although the NMDA receptor presents a valuable therapeutic target, the relationship between its structure and functional properties has yet to be fully elucidated. To further explore the mechanism of receptor activation, we characterized two gain-of-function mutations within the NR1 M3 segment, a transmembrane domain proposed to couple ligand binding and channel opening.
View Article and Find Full Text PDFAlthough the N-methyl-D-aspartate (NMDA) receptor plays a critical role in the central nervous system, many questions remain regarding the relationship between its structure and functional properties. In particular, the involvement of ligand-binding domain closure in determining agonist efficacy, which has been reported in other glutamate receptor subtypes, remains unresolved. To address this question, we designed dual cysteine point mutations spanning the NR1 and NR2 ligand-binding clefts, aiming to stabilize these domains in closed cleft conformations.
View Article and Find Full Text PDFArc/Arg3.1 is an immediate early gene whose expression is necessary for the late-phase of long-term potentiation (LTP) and memory consolidation. Whereas pathways regulating Arc transcription have been extensively investigated, less is known about the role of post-transcriptional mechanisms in Arc expression.
View Article and Find Full Text PDFActivity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene, whose expression in the central nervous system is induced by specific patterns of synaptic activity. Arc is required for the late-phase of long-term potentiation (LTP) and memory consolidation, and has been implicated in AMPA receptor trafficking.
View Article and Find Full Text PDFK+ channels achieve exquisite ion selectivity without jeopardizing efficient permeation by employing multiple, interacting K+-binding sites. Introduction ofa cadmium (Cd2+)-binding site in the external vestibule of Kv2.1 (drk1), allowed us to functionally characterize a binding site for external monovalent cations.
View Article and Find Full Text PDFAbnormalities in dendritic spines have long been associated with cognitive dysfunction and neurodevelopmental delay, whereas rapid changes in spine shape underlie synaptic plasticity. The key regulators of cytoskeletal reorganization in dendrites and spines are the Rho GTPases, which modify actin polymerization in response to synaptic signaling. Rho GTPase activity is modulated by multiple regulatory proteins, some of which have been found to associate with proteins localized to spines.
View Article and Find Full Text PDFVoltage-gated K channels assemble from four identical subunits symmetrically arranged around a central permeation pathway. Each subunit harbors a voltage-sensing domain. The sigmoidal nature of the activation kinetics suggests that multiple sensors need to undergo a conformational change before the channel can open.
View Article and Find Full Text PDFMaintenance of synaptic plasticity requires protein translation. Because changes in synaptic strength are regulated at the level of individual synapses, a mechanism is required for newly translated proteins to specifically and persistently modify only a subset of synapses. Evidence suggests this may be accomplished through local translation of proteins at or near synapses in response to plasticity-inducing patterns of activity.
View Article and Find Full Text PDF