Deep proteomic profiling of complex biological and medical samples available at low nanogram and subnanogram levels is still challenging. Thorough optimization of settings, parameters, and conditions in nanoflow liquid chromatography-tandem mass spectrometry (MS)-based proteomic profiling is crucial for generating informative data using amount-limited samples. This study demonstrates that by adjusting selected instrument parameters, e.
View Article and Find Full Text PDFRecent advances in methodology have made phosphopeptide analysis a tractable problem for many proteomics researchers. There are now a wide variety of robust and accessible enrichment strategies to generate phosphoproteomes while free or inexpensive software tools for quantitation and site localization have simplified phosphoproteome analysis workflow tremendously. As a research group under the Association for Biomolecular Resource Facilities umbrella, the Proteomics Standards Research Group has worked to develop a multipathway phosphopeptide standard based on a mixture of heavy-labeled phosphopeptides designed to enable researchers to rapidly develop assays.
View Article and Find Full Text PDFDeveloping safe and effective nanoparticles for the delivery of messenger RNA (mRNA) is slow and expensive, partly due to the lack of predictive power of in vitro screening methods and the low-throughput nature of in vivo screening. While DNA barcoding and batch analysis present methods for increasing in vivo screening throughput, they can also result in incomplete or misleading measures of efficacy. Here, we describe a high-throughput and accurate method for the screening of pooled nanoparticle formulations within the same animal.
View Article and Find Full Text PDFBackground: Macrophages are innate immune cells with diverse functional and molecular phenotypes. This diversity is largely unexplored at the level of single-cell proteomes because of the limitations of quantitative single-cell protein analysis.
Results: To overcome this limitation, we develop SCoPE2, which substantially increases quantitative accuracy and throughput while lowering cost and hands-on time by introducing automated and miniaturized sample preparation.
Recent genome-wide studies have begun to identify gene variants, expression profiles, and regulators associated with neuroticism, anxiety disorders, and depression. We conducted a set of experimental cell culture studies of gene regulation by micro RNAs (miRNAs), based on genome-wide transcriptome, proteome, and miRNA expression data from twenty postmortem samples of lateral amygdala from donors with known neuroticism scores. Using Ingenuity Pathway Analysis and TargetScan, we identified a list of mRNA-protein-miRNA sets whose expression patterns were consistent with miRNA-based translational repression, as a function of trait anxiety.
View Article and Find Full Text PDFActivation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown.
View Article and Find Full Text PDFIntracellular collagen assembly begins with the oxidative folding of ∼30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature.
View Article and Find Full Text PDFOne gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity.
View Article and Find Full Text PDFDuring disease, cells experience various stresses that manifest as an accumulation of misfolded proteins and eventually lead to cell death. To combat this stress, cells activate a pathway called unfolded protein response that functions to maintain endoplasmic reticulum (ER) homeostasis and determines cell fate. We recently reported a hitherto unknown mechanism of regulating ER stress via a novel post-translational modification called Fic-mediatedadenylylation/AMPylation.
View Article and Find Full Text PDFMatrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g.
View Article and Find Full Text PDFAfter a radiological incident, there is an urgent need for fast and reliable bioassays to identify radiation-exposed individuals within the first week post exposure. This study aimed to identify candidate radiation-responsive protein biomarkers in human lymphocytes in vivo using humanized NOD scid gamma (Hu-NSG) mouse model. Three days after X-irradiation (0-2 Gy, 88 cGy/min), human CD45+ lymphocytes were collected from the Hu-NSG mouse spleen and quantitative changes in the proteome of the human lymphocytes were analysed by mass spectrometry.
View Article and Find Full Text PDFBackground: Exosomes are cell-derived circulating vesicles that play an important role in cell-cell communication. Exosomes are actively assembled and carry messenger RNAs, microRNAs and proteins. The "gold standard" for cardiac allograft surveillance is endomyocardial biopsy (EMB), an invasive technique with a distinct complication profile.
View Article and Find Full Text PDFProteomics characterization of biofluids, such as urine and plasma, has been explored for the discovery of predictive, prognostic, and mechanistic biomarkers of diseases and tissue injury. Here we describe comprehensive characterization of protein cargos from cell-derived secreted vesicles (extracellular vesicles or exosome) for biomarker discovery using the mass spectrometry-based technology.
View Article and Find Full Text PDFIn an approach aimed at defining interacting partners of ceramide synthases (CerSs), we found that fatty acyl-CoA synthase ACSL5 interacts with all CerSs. We demonstrate that ACSL5-generated FA-CoA was utilized with de novo ceramide for the generation of acylceramides, poorly studied ceramide metabolites. Functionally, inhibition of ceramide channeling to acylceramide enhanced accumulation of de novo ceramide and resulted in augmentation of ceramide-mediated apoptosis.
View Article and Find Full Text PDFAdaptive changes in the genome of a locally predominant clinical isolate of the multidrug-resistant ST258 (KP35) were identified and help to explain the selection of this strain as a successful pulmonary pathogen. The acquisition of 4 new ortholog groups, including an arginine transporter, enabled KP35 to outcompete related ST258 strains lacking these genes. KP35 infection elicited a monocytic response, dominated by Ly6C monocytic myeloid-derived suppressor cells that lacked phagocytic capabilities, expressed IL-10, arginase, and antiinflammatory surface markers.
View Article and Find Full Text PDFPurpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression.
View Article and Find Full Text PDFBackground: Intermolecular autophosphorylation at Tyr416 is a conserved mechanism of activation among the members of the Src family of nonreceptor tyrosine kinases. Like several other tyrosine kinases, Src can catalyze the thiophosphorylation of peptide and protein substrates using ATPγS as a thiophosphodonor, although the efficiency of the reaction is low.
Results: Here, we have characterized the ability of Src to auto-thiophosphorylate.
Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy.
View Article and Find Full Text PDFThe soft body surface of marine invertebrates is covered by a layer of mucus, a slippery gel secreted by mucocytes lining epithelia. The functions of this gel are diverse including locomotion, cleansing, food particles processing and defense against physicochemical injuries and infectious agents. In oysters, mucus covering pallial organs has been demonstrated to have a major importance in the processing of food particles and in the interactions with waterborne pathogens.
View Article and Find Full Text PDFSalmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells.
View Article and Find Full Text PDFUnlabelled: NKX3.1 is a prostate-specific homeodomain protein and tumor suppressor whose expression is reduced in the earliest phases of prostatic neoplasia. NKX3.
View Article and Find Full Text PDFThe maintenance of endoplasmic reticulum (ER) homeostasis is a critical aspect of determining cell fate and requires a properly functioning unfolded protein response (UPR). We have discovered a previously unknown role of a post-translational modification termed adenylylation/AMPylation in regulating signal transduction events during UPR induction. A family of enzymes, defined by the presence of a Fic (filamentation induced by cAMP) domain, catalyzes this adenylylation reaction.
View Article and Find Full Text PDFSecreted and cell surface-associated molecules play a major role in disease development processes and host-pathogen interactions, and usually determine the virulence of invading organisms. In this study, we investigated proteins secreted by quahog parasite unknown, a thraustochytrid protist that infects the hard clam, Mercenaria mercenaria. In silico analysis of quahog parasite unknown transcripts predicted over 1200 proteins to possess an amino-terminal signal peptide which directs proteins into the classical eukaryotic secretory pathway.
View Article and Find Full Text PDFYopM is a leucine-rich repeat (LRR)-containing effector in several Yersinia species, including Yersinia pestis and Y. pseudotuberculosis. Different Yersinia strains encode distinct YopM isoforms with variable numbers of LRRs but conserved C-terminal tails.
View Article and Find Full Text PDFPhosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro.
View Article and Find Full Text PDF