Publications by authors named "Antonius J A van Maris"

Ectoine, an osmolyte produced by various microorganisms, has numerous commercial applications. Vreelandella boliviensis (formerly called Halomonas boliviensis) generates high ectoine concentrations, i.e.

View Article and Find Full Text PDF

Acetivibrio thermocellus (formerly Clostridium thermocellum) is a potential platform for lignocellulosic ethanol production. Its industrial application is hampered by low product titres, resulting from a low thermodynamic driving force of its central metabolism. It possesses both a functional ATP- and a functional PP-dependent 6-phosphofructokinase (PP-Pfk), of which only the latter is held responsible for the low driving force.

View Article and Find Full Text PDF

Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of conditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engineering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the ecGEM solution space aligned well with observed phenotypes.

View Article and Find Full Text PDF

Acyl-CoA-thioesterases, which hydrolyze acyl-CoA-esters and thereby release the respective acid, have essential functions in cellular metabolism and have also been used to produce valuable compounds in biotechnological processes. Thioesterase YciA originating from Haemophilus influenzae has been previously used to produce specific dicarboxylic acids from CoA-bound intermediates of the ethylmalonyl CoA pathway (EMCP) in Methylorubrum extorquens. In order to identify variants of the YciA enzyme with the capability to hydrolyze so far inaccessible CoA-esters of the EMCP or with improved productivity, we engineered the substrate-binding region of the enzyme.

View Article and Find Full Text PDF

Lake Pastos Grandes in Bolivia is mainly composed of salt flats, which are sporadically and only partially submerged during the wet season. In the present study, the chemical composition of water samples of the lake and some influent rivers was determined. We found that it is likely that the lake was influenced by the dilution of metals from ancient evaporites.

View Article and Find Full Text PDF

The phosphofructokinase (Pfk) reaction represents one of the key regulatory points in glycolysis. While most organisms encode for Pfks that use ATP as phosphoryl donor, some organisms also encode for PP-dependent Pfks. Despite this central role, the biochemical characteristics as well as the physiological role of both Pfks is often not known.

View Article and Find Full Text PDF

Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PP) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PP sources are key to engineering its metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • * The study investigated amino acid secretion by modifying specific gene pathways and found that reducing branched-chain amino acids like valine increased ethanol yield significantly, indicating a relationship between NADPH surplus and amino acid secretion.
  • * The research suggests that optimizing NADPH and ammonium assimilation could improve ethanol production, as observed changes in amino acid yields indicate a need for reoxidizing NADPH to maximize fermentation efficiency.
View Article and Find Full Text PDF

Background: Clostridium thermocellum is a promising candidate for consolidated bioprocessing of lignocellulosic biomass to ethanol. The low ethanol tolerance of this microorganism is one of the remaining obstacles to industrial implementation. Ethanol inhibition can be caused by end-product inhibition and/or chaotropic-induced stress resulting in increased membrane fluidization and disruption of macromolecules.

View Article and Find Full Text PDF

The atypical glycolysis of Clostridium thermocellum is characterized by the use of pyrophosphate (PP) as a phosphoryl donor for phosphofructokinase (Pfk) and pyruvate phosphate dikinase (Ppdk) reactions. Previously, biosynthetic PP was calculated to be stoichiometrically insufficient to drive glycolysis. This study investigates the role of a H-pumping membrane-bound pyrophosphatase, glycogen cycling, a predicted Ppdk-malate shunt cycle, and acetate cycling in generating PP.

View Article and Find Full Text PDF

The native ability of to efficiently solubilize cellulose makes it an interesting platform for sustainable biofuel production through consolidated bioprocessing. Together with other improvements, industrial implementation of , as well as fundamental studies into its metabolism, would benefit from improved and reproducible consumption of hexose sugars. To investigate growth of on glucose or fructose, as well as the underlying molecular mechanisms, laboratory evolution was performed in carbon-limited chemostats with increasing concentrations of glucose or fructose and decreasing cellobiose concentrations.

View Article and Find Full Text PDF

Valorisation of food residues would greatly benefit from development of robust processes that create added value compared to current feed- and biogas applications. Recent advances in membrane-bioreactor-based open mixed microbial cultures, enable robust conversion of fluctuating streams of food residues to a mixture of volatile fatty acids (VFAs). In this study, such a mixed stream of VFAs was investigated as a substrate for Escherichia coli, a well-studied organism suitable for application in further conversion of the acids into compounds of higher value, and/or that are easier to separate from the aqueous medium.

View Article and Find Full Text PDF

There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators.

View Article and Find Full Text PDF

We present a fluorescence-based approach for determination of the permeability of small molecules across the membranes of lipid vesicles and living cells. With properly designed experiments, the method allows us to assess the membrane physical properties both in vitro and in vivo. We find that the permeability of weak acids increases in the order of benzoic > acetic > formic > lactic, both in synthetic lipid vesicles and the plasma membrane of Saccharomyces cerevisiae, but the permeability is much lower in yeast (one to two orders of magnitude).

View Article and Find Full Text PDF

In metabolic engineering and synthetic biology, the number of genes expressed to achieve better production and pathway regulation in each strain is steadily increasing. The method of choice for expression in Escherichia coli is usually one or several multi-copy plasmids. Meanwhile, the industry standard for long-term, robust production is chromosomal integration of the desired genes.

View Article and Find Full Text PDF
Article Synopsis
  • - The study addresses acetate accumulation as a limiting factor in producing (R)-3-hydroxybutyrate (3HB) using E. coli in high-cell-density processes.
  • - Researchers evaluated two strategies: deleting specific genes to reduce acetate formation and screening various E. coli strains to find low acetate-producing platforms.
  • - The BL21 strain was identified as the best performer, yielding significantly higher 3HB production and lower acetate formation compared to other strains, achieving record 3HB concentration and productivity.
View Article and Find Full Text PDF

Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase.

View Article and Find Full Text PDF

Display of recombinant enzymes on the cell surface of Gram-negative bacteria is a desirable feature with applications in whole-cell biocatalysis, affinity screening and degradation of environmental pollutants. One common technique for recombinant protein display on the Escherichia coli surface is autotransport. Successful autotransport of an enzyme largely depends on the following: (1) the size, sequence and structure of the displayed protein, (2) the cultivation conditions, and (3) the choice of the autotransporter expression system.

View Article and Find Full Text PDF

Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine.

View Article and Find Full Text PDF

Open data in science requires precise definition of experimental procedures used in data generation, but traditional practices for sharing protocols and data cannot provide the required data contextualization. Here, we explore implementation, in an academic research setting, of a novel cloud-based software system designed to address this challenge. The software supports systematic definition of experimental procedures as visual processes, acquisition and analysis of primary data, and linking of data and procedures in machine-computable form.

View Article and Find Full Text PDF

Expression of a heterologous xylose isomerase, deletion of the GRE3 aldose-reductase gene and overexpression of genes encoding xylulokinase (XKS1) and non-oxidative pentose-phosphate-pathway enzymes (RKI1, RPE1, TAL1, TKL1) enables aerobic growth of Saccharomyces cerevisiae on d-xylose. However, literature reports differ on whether anaerobic growth on d-xylose requires additional mutations. Here, CRISPR-Cas9-assisted reconstruction and physiological analysis confirmed an early report that this basic set of genetic modifications suffices to enable anaerobic growth on d-xylose in the CEN.

View Article and Find Full Text PDF

Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the yeast Saccharomyces cerevisiae tolerates acetic acid, focusing on the length of the latency phase before cells start growing again after exposure.
  • Researchers aimed to identify genetic differences between a highly tolerant strain (MUCL 11987-9) and a standard lab strain (CEN.PK113-7D).
  • Using advanced methods like genetic mapping and RNA sequencing, they discovered six genes that affect cell proliferation in acetic acid, identifying ESP1 and MET22 as key genetic factors involved.
View Article and Find Full Text PDF

d-Glucose, d-xylose and l-arabinose are major sugars in lignocellulosic hydrolysates. This study explores fermentation of glucose-xylose-arabinose mixtures by a consortium of three 'specialist' Saccharomyces cerevisiae strains. A d-glucose- and l-arabinose-tolerant xylose specialist was constructed by eliminating hexose phosphorylation in an engineered xylose-fermenting strain and subsequent laboratory evolution.

View Article and Find Full Text PDF

Agricultural residues such as sugar beet pulp and citrus peel are rich in pectin, which contains galacturonic acid as a main monomer. Pectin-rich residues are underexploited as feedstocks for production of bulk chemicals or biofuels. The anaerobic, fermentative conversion of d-galacturonate in anaerobic chemostat enrichment cultures provides valuable information toward valorization of these pectin-rich feedstocks.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkhvv46em9ikshrjrkuiomin7eqabubbe): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once