Publications by authors named "Antonius F W van der Steen"

Objective: Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization.

View Article and Find Full Text PDF

Photothermal optical coherence microscopy (PT-OCM) combines the high-resolution, label-free morphological imaging of OCM with the ability to discriminate tissue composition through phase-sensitive photothermal imaging. In this study, we perform 2D imaging of human carotid endarterectomies to spectrally determine lipid distribution, with verification via histologically stained samples. The structural information from OCM is combined with the spectral information gained from measuring the resulting sample surface displacement from thermoelastic expansion, following light irradiation.

View Article and Find Full Text PDF

Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, spatial distribution, and amount of vascular permeability increase. Accurate models are necessary for insights into the mechanism so a microvessel-on-a-chip is developed with a membrane-free extravascular space.

View Article and Find Full Text PDF

Multimodal intravascular ultrasound and photoacoustic (IVUS/PA) imaging is a promising diagnostic tool for cardiovascular diseases like atherosclerosis. IVUS/PA catheters typically require two independent transducers due to different frequency requirements, potentially increasing the catheter size. To facilitate multimodal imaging within conventional catheter dimensions, we designed, fabricated, and characterized a dual-transducer acoustic stack where a low-frequency (LF) PA receiver sits as a matching layer for the high-frequency (HF) US transducer.

View Article and Find Full Text PDF

Intravascular ultrasound and optical coherence tomography are used with increasing frequency for the care of coronary patients and in research studies. These imaging tools can identify culprit lesions in acute coronary syndromes, assess coronary stenosis severity, guide percutaneous coronary intervention (PCI), and detect vulnerable plaques and patients. However, they have significant limitations that have stimulated the development of multimodality intracoronary imaging catheters, which provide improvements in assessing vessel wall pathology and guiding PCI.

View Article and Find Full Text PDF

Spectral photoacoustic imaging in combination with unmixing techniques may be applied to retrieve information about high-risk features present in atherosclerotic plaques, possibly providing prognostic insights into future stroke events. We present the photoacoustic spectral contrast found in 12 systematically scanned advanced atherosclerotic plaques in the near-infrared wavelength range (850-1250 nm). The main absorbers are lipid, water, and hemoglobin, with the highest photoacoustic intensities at the lipid's second overtone at 1190 and 1210 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Coronary atherosclerosis is driven by plaque accumulation, with lipids significantly influencing its development, but their specific roles and distributions are not well understood.
  • This study uses MALDI-MSI to visualize lipid distributions in different stages of coronary artery disease in hypercholesterolemic swine, classifying segments as healthy, mild, or advanced disease.
  • Findings reveal unique lipid profiles and their associations with disease progression, particularly highlighting the relationship of specific lipids with necrotic areas and inflammatory cells in advanced plaques.*
View Article and Find Full Text PDF

Background And Aims: Atherosclerotic plaque onset and progression are known to be affected by local biomechanical factors. While the role of wall shear stress (WSS) has been studied, the impact of another biomechanical factor, namely mechanical wall stress (MWS), remains poorly understood. In this study, we investigated the association of MWS, independently and combined with WSS, towards atherosclerosis in coronary arteries.

View Article and Find Full Text PDF

Ultrasound-based shear wave elastography is a promising technique to non-invasively assess the dynamic stiffness variations of the heart. The technique is based on tracking the propagation of acoustically induced shear waves in the myocardium of which the propagation speed is linked to tissue stiffness. This measurement is repeated multiple times across the cardiac cycle to assess the natural variations in wave propagation speed.

View Article and Find Full Text PDF

Assessing the coronary circulation with contrast-enhanced echocardiography has high clinical relevance. However, it is not being routinely performed in clinical practice because the current clinical tools generally cannot provide adequate image quality. The contrast agent's visibility in the myocardium is generally poor, impaired by motion and nonlinear propagation artifacts.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effectiveness of a new ultrasound technique for imaging kidney blood vessels in pigs using a specialized device called a sparse spiral array.
  • Researchers used different microbubble concentrations and transmission sequences to capture detailed 3D images and assess blood flow in the kidneys, comparing their findings to results from a standard 2-D ultrasound.
  • The results showed that the new method successfully visualized kidney vasculature and blood flow, providing accurate and reliable data that matched traditional ultrasound results.
View Article and Find Full Text PDF

Atherosclerotic plaque rupture in carotid arteries is a major cause of cerebrovascular events. Plaque rupture is the mechanical failure of the heterogeneous fibrous plaque tissue. Local characterization of the tissue's failure properties and the collagen architecture are of great importance to have insights in plaque rupture for clinical event prevention.

View Article and Find Full Text PDF

Optical coherence elastography (OCE), a functional extension of optical coherence tomography (OCT), visualizes tissue strain to deduce the tissue's biomechanical properties. In this study, we demonstrate intravascular OCE using a 1.1 mm motorized catheter and a 1.

View Article and Find Full Text PDF

Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras.

View Article and Find Full Text PDF

Background: Patients with symptomatic carotid stenosis are at high risk for recurrent stroke. The decision for carotid endarterectomy currently mainly relies on degree of stenosis (cutoff value >50% or 70%). Nevertheless, also, patients with mild-to-moderate stenosis still have a considerable recurrent stroke risk.

View Article and Find Full Text PDF

Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and reception strategies. To test the concept of sparse spiral array imaging, we have designed, realized, and characterized two prototype probes designed at 2.

View Article and Find Full Text PDF
Article Synopsis
  • The text addresses an error found in the article on page 1430 of volume 13, referenced by PMID: 35414978.!
  • It aims to clarify or rectify the information presented in that specific article for accurate understanding.!
  • This correction is crucial for researchers and readers who rely on this information in their studies or reviews.!
View Article and Find Full Text PDF

Echocardiography is less than 70 years old, and many major advances have occurred within living memory, but already some pioneering contributions may be overlooked. In order to consider what circumstances have been common to the most successful innovations, we have studied and here provide a timeline and summary of the most important developments in transthoracic and transoesophageal ultrasound imaging and Doppler techniques, as well as in intravascular ultrasound and imaging in paediatric cardiology. The entries are linked to a comprehensive list of first publications and to a collection of first-hand historical accounts published by early investigators.

View Article and Find Full Text PDF

Bacteria encased in a biofilm poses significant challenges to successful treatment, since both the immune system and antibiotics are ineffective. Sonobactericide, which uses ultrasound and microbubbles, is a potential new strategy for increasing antimicrobial effectiveness or directly killing bacteria. Several studies suggest that sonobactericide can lead to bacterial dispersion or sonoporation (i.

View Article and Find Full Text PDF

Suppressing tissue clutter is an essential step in blood flow estimation and visualization, even when using ultrasound contrast agents. Blind source separation (BSS)-based clutter filter for high-framerate ultrasound imaging has been reported to perform better in tissue clutter suppression than the conventional frequency-based wall filter and nonlinear contrast pulsing schemes. The most notable BSS technique, singular value decomposition (SVD) has shown compelling results in cases of slow tissue motion.

View Article and Find Full Text PDF

Ultrasound insonification of microbubbles can locally enhance drug delivery by increasing the cell membrane permeability. To aid development of a safe and effective therapeutic microbubble, more insight into the microbubble-cell interaction is needed. In this in vitro study we aimed to investigate the initial 3D morphology of the endothelial cell membrane adjacent to individual microbubbles (n = 301), determine whether this morphology was affected upon binding and by the type of ligand on the microbubble, and study its influence on microbubble oscillation and the drug delivery outcome.

View Article and Find Full Text PDF

Optical imaging techniques that provide free space, label free imaging are powerful tools in obtaining structural and biochemical information in biological samples. To date, most of the optical imaging technologies create images with a specific contrast and require multimodality integration to add additional contrast. In this study, we demonstrate spectroscopic Thermo-elastic Optical Coherence Tomography (TE-OCT) as a potential tool in tissue identification.

View Article and Find Full Text PDF

Phospholipid-coated targeted microbubbles are used for ultrasound molecular imaging and locally enhanced drug delivery, with the binding efficacy being an important trait. The use of organic solvent in microbubble production makes the difference between a heterogeneous or homogeneous ligand distribution. This study demonstrates the effect of ligand distribution on the binding efficacy of phospholipid-coated αβ-targeted microbubbles in vitro using a monolayer of human umbilical-vein endothelial cells and in vivo using chicken embryos.

View Article and Find Full Text PDF

Objective: Plaque rupture in atherosclerotic carotid arteries is a main cause of ischemic stroke and it is correlated with high plaque stresses. Hence, analyzing stress patterns is essential for plaque specific rupture risk assessment. However, the critical information of the multicomponent material properties of atherosclerotic carotid arteries is still lacking greatly.

View Article and Find Full Text PDF

Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management.

View Article and Find Full Text PDF