Early intervention in Alzheimer's Disease (AD) requires novel biomarkers that can capture changes in brain activity at an early stage. Current AD biomarkers are expensive and/or invasive and therefore unsuitable for use as screening tools, but a non-invasive, inexpensive, easily accessible screening method could be useful in both clinical and research settings. Prior studies suggest that especially paired-associate learning tasks may be useful in detecting the earliest memory impairment in AD.
View Article and Find Full Text PDFMotor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity.
View Article and Find Full Text PDFHere we present a novel approach to quickly and reliably find long (200 ms - 2 s) stereotyped sequences of sounds ("motifs") in acoustic recordings of birdsong. Robust and time-efficient identification of such sequences is a crucial first step in many studies ranging from development to neuronal basis of motor behavior. Accurately identifying motifs is usually hindered by the presence of animal-intrinsic variability in execution and tempo, and by extrinsic acoustic noise (e.
View Article and Find Full Text PDFExecuting a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control-motor implementation and timing-are acquired, and whether the learning processes underlying them differ, is not well understood. To address this, we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits.
View Article and Find Full Text PDFWe explored the map of odor space created by glomeruli on the olfactory bulb of both rat and mouse. Identified glomeruli could be matched across animals by their response profile to hundreds of odors. Their layout in different individuals varied by only approximately 1 glomerular spacing, corresponding to a precision of 1 part in 1,000.
View Article and Find Full Text PDFCenter-surround receptive fields are a fundamental unit of brain organization. It has been proposed that olfactory bulb mitral cells exhibit this functional circuitry, with excitation from one glomerulus and inhibition from a broad field of glomeruli within reach of the lateral dendrites. We investigated this hypothesis using a combination of in vivo intrinsic imaging, single-unit recording, and a large panel of odors.
View Article and Find Full Text PDF