Publications by authors named "Antonis Hatzopoulos"

The Bone Morphogenetic Protein (BMP) signaling pathway is vital in neural progenitor cell proliferation, specification, and differentiation. The BMP signaling antagonist Gremlin 2 (Grem2) is the most potent natural inhibitor of BMP expressed in the adult brain; however its function remains unknown. To address this knowledge gap, we have analyzed mice lacking Grem2 via homologous recombination ( ).

View Article and Find Full Text PDF
Article Synopsis
  • Salt sensitivity of blood pressure (SSBP) is a significant risk factor for cardiovascular disease, influenced by sodium intake and is associated with changes in antigen-presenting cells (APCs) and the JAK2 signaling pathway.
  • The study utilized various methods, including transcriptomic analyses, mouse models, and immunophenotyping, to investigate the effects of high salt on blood pressure and the underlying mechanisms involving JAK2, STAT3, and SMAD3.
  • Results showed that high salt increases the expression of genes in the JAK/STAT/SMAD pathway in human monocytes, and the knockout of JAK2 in APCs significantly reduced salt-induced hypertension in mice, indicating a crucial role of this pathway in S
View Article and Find Full Text PDF

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) affects >30 million Americans and nearly 70% of individuals with T2D will die from cardiovascular disease (CVD). Circulating levels of the inflammatory signaling lipid, prostaglandin E (PGE ), are elevated in the setting of obesity and T2D and are associated with decreased cardiac function. The EP3 and EP4 PGE receptors have opposing actions in several tissues, including the heart: overexpression of EP3 in cardiomyocytes impairs function, while EP4 overexpression improves function.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI) induces an intense injury response that ultimately generates a collagen-dominated scar. Although required to prevent ventricular rupture, the fibrotic process is often sustained in a manner detrimental to optimal recovery. Cardiac myofibroblasts are the cells tasked with depositing and remodeling collagen and are a prime target to limit the fibrotic process after MI.

View Article and Find Full Text PDF

The well-described Wnt inhibitor Dickkopf-1 (DKK1) plays a role in angiogenesis as well as in regulation of growth factor signaling cascades in pulmonary remodeling associated with chronic lung diseases (CLDs) including emphysema and fibrosis. However, the specific mechanisms by which DKK1 influences mesenchymal vascular progenitor cells (MVPCs), microvascular endothelial cells (MVECs), and smooth muscle cells (SMCs) within the microvascular niche have not been elucidated. In this study, we show that knockdown of DKK1 in Abcg2 lung mouse adult tissue resident MVPCs alters lung stiffness, parenchymal collagen deposition, microvessel muscularization and density as well as loss of tissue structure in response to hypoxia exposure.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients.

View Article and Find Full Text PDF

Over one million Americans experience myocardial infarction (MI) annually, and the resulting scar and subsequent cardiac fibrosis gives rise to heart failure. A specialized cell-cell adhesion protein, cadherin-11 (CDH11), contributes to inflammation and fibrosis in rheumatoid arthritis, pulmonary fibrosis, and aortic valve calcification but has not been studied in myocardium after MI. MI was induced by ligation of the left anterior descending artery in mice with either heterozygous or homozygous knockout of CDH11, wild-type mice receiving bone marrow transplants from Cdh11-deficient animals, and wild-type mice treated with a functional blocking antibody against CDH11 (SYN0012).

View Article and Find Full Text PDF

In the decade since Disease Models & Mechanisms was launched, the emergence of Big Data as the main foundation of biological information is having a profound effect on how we do research and it has provoked some interesting questions. Is Big Data exploration replacing hypothesis-driven basic research? And, to what extent is disease modeling in the laboratory still relevant to medical research? Recent examples of synergistic approaches utilizing animal modeling and electronic medical records mining show that combining efforts between disease models and clinical datasets can uncover not only disease etiologies, but also novel molecular and cellular mechanisms linked to gene function.

View Article and Find Full Text PDF

By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.

View Article and Find Full Text PDF

Rationale: The TIME trial (Timing in Myocardial Infarction Evaluation) was the first cell therapy trial sufficiently powered to determine if timing of cell delivery after ST-segment-elevation myocardial infarction affects recovery of left ventricular (LV) function.

Objective: To report the 2-year clinical and cardiac magnetic resonance imaging results and their modification by microvascular obstruction.

Methods And Results: TIME was a randomized, double-blind, placebo-controlled trial comparing 150 million bone marrow mononuclear cells versus placebo in 120 patients with anterior ST-segment-elevation myocardial infarctions resulting in LV dysfunction.

View Article and Find Full Text PDF

Purpose Of Review: This review aims to summarize recent findings regarding the plasticity and fate switching among somatic and progenitor cells residing in the vascular wall of blood vessels in health and disease.

Recent Findings: Cell lineage tracing methods have identified multiple origins of stem cells, macrophages, and matrix-producing cells that become mobilized after acute or chronic injury of cardiovascular tissues. These studies also revealed that in the disease environment, resident somatic cells become plastic, thereby changing their stereotypical identities to adopt proinflammatory and profibrotic phenotypes.

View Article and Find Full Text PDF

The use of induced pluripotent stem cells (iPSC) derived from independent patients and sources holds considerable promise to improve the understanding of development and disease. However, optimized use of iPSC depends on our ability to develop methods to efficiently qualify cell lines and protocols, monitor genetic stability, and evaluate self-renewal and differentiation potential. To accomplish these goals, 57 stem cell lines from 10 laboratories were differentiated to 7 different states, resulting in 248 analyzed samples.

View Article and Find Full Text PDF

Accumulation of myofibroblasts is a hallmark of renal fibrosis. A significant proportion of myofibroblasts has been reported to originate via endothelial-mesenchymal transition. We initially hypothesized that exposing myofibroblasts to the extract of endothelial progenitor cells (EPCs) could reverse this transition.

View Article and Find Full Text PDF

Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis.

View Article and Find Full Text PDF

The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin.

View Article and Find Full Text PDF

Rationale: We have recently shown that the bone morphogenetic protein (BMP) antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. Our initial studies discovered that Grem2 is strongly induced in the adult heart after experimental myocardial infarction (MI). However, the function of Grem2 and BMP-signaling inhibitors after cardiac injury is currently unknown.

View Article and Find Full Text PDF

Protocols for generating populations of cardiomyocytes from pluripotent stem cells have been developed, but these generally yield cells of mixed phenotypes. Researchers interested in pursuing studies involving specific myocyte subtypes require a more directed differentiation approach. By treating mouse embryonic stem (ES) cells with Grem2, a secreted BMP antagonist that is necessary for atrial chamber formation in vivo, a large number of cardiac cells with an atrial phenotype can be generated.

View Article and Find Full Text PDF

Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension.

View Article and Find Full Text PDF

Rationale: Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown.

View Article and Find Full Text PDF

Cardiac tissue undergoes renewal with low rates. Although resident stem cell populations have been identified to support cardiomyocyte turnover, the source of the cardiac stem cells and their niche remain elusive. Using Cre/Lox-based cell lineage tracing strategies, we discovered that labeling of endothelial cells in the adult heart yields progeny that have cardiac stem cell characteristics and express Gata4 and Sca1.

View Article and Find Full Text PDF

Surgical flow augmentation for treatment of cerebral hemodynamic impairment remains controversial. Here, we investigated the benefit of endothelial progenitor cell (EPC) treatment in a rat model of chronic cerebral hypoperfusion. At repeated time points after 3-vessel occlusion (3-VO), animals were treated with 1 × 10(6) DiI-labeled (a) ex vivo-expanded embryonic-EPC (e-EPC), (b) cyclic AMP-differentiated embryonic-endothelial progenitor-derived cells (e-EPDC as biologic control) or, (c) saline.

View Article and Find Full Text PDF

The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation.

View Article and Find Full Text PDF

The facilitated recruitment of vascular progenitor cells (VPCs) to ischemic areas might be a therapeutic target for neovascularization and repair. However, efficient and directed attraction of VPCs remains a major challenge in clinical application. To enhance VPC homing, we developed a fusion protein (S1FG), based on the biology of stroma-derived factor-1/CXCL12 and the mucin backbone taken from fractalkine/CXCL12.

View Article and Find Full Text PDF

Introduction: Significant advances have been made to understand the mechanisms involved in cardiac cell-based therapies. The early translational application of basic science knowledge has led to several animal and human clinical trials. The initial promising beneficial effect of stem cells on cardiac function restoration has been eclipsed by the inability of animal studies to translate into sustained clinical improvements in human clinical trials.

View Article and Find Full Text PDF