Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties.
View Article and Find Full Text PDFCyclodextrin molecules are increasingly being used in biological research and as therapeutic agents to alter membrane cholesterol content, yet there is much to learn about their interactions with cell membranes. We present a biomembrane-based organic electronic platform capable of detecting interactions of cell membrane constituents with methyl-β-cyclodextrin (MβCD). This approach enables label-free sensing and quantification of changes in membrane integrity resulting from such interactions.
View Article and Find Full Text PDFThe structural characteristics of supports, such as surface area and type of porosity, affect the deposition of electrocatalysts and greatly influence their electrochemical performance in fuel cells. In this work, we use a series of high surface area hierarchical porous carbons (HPCs) with defined mesoporosity as model supports to study the deposition mechanism of Pt nanoparticles. The resulting electrocatalysts are characterized by several analytical techniques, and their electrochemical performance is compared to a state-of-the-art, commercial Pt/C system.
View Article and Find Full Text PDFParticle-stabilized emulsions (Pickering emulsions) have recently attracted significant attention in scientific studies and for technological applications. The interest stems from the ease of directly assembling the particles at interfaces and modulating the interfacial properties. In this paper, we demonstrate the formation of stable, practical emulsions leveraging the assembly of ionizable, pH responsive silica nanoparticles, surface-functionalized by a mixture of silanes containing amine/ammonium groups, which renders them positively charged.
View Article and Find Full Text PDFA targeted and controlled delivery of molecular surfactants at oil-water interfaces using the directed assembly of nanoparticles, NPs, is reported. The mechanism of NP assembly at the interface and the release of molecular surfactants is followed by laser scanning confocal microscopy and surface force spectroscopy. The assembly of positively charged polystyrene NPs at the oil-water interface was facilitated by the introduction of carboxylic acid groups in the oil phase (e.
View Article and Find Full Text PDFGraphene, a two-dimensional single-layer carbon allotrope, has attracted tremendous scientific interest due to its outstanding physicochemical properties. Its monatomic thickness, high specific surface area, and chemical stability render it an ideal building block for the development of well-ordered layered nanostructures with tailored properties. Herein, biohybrid graphene-based layer-by-layer structures are prepared by means of conventional and surfactant-assisted Langmuir-Schaefer layer deposition techniques, whereby cytochrome c molecules are accommodated within ordered layers of graphene oxide.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2020
Angew Chem Int Ed Engl
January 2021
Block copolymers (BCPs), through their self-assembly, provide an excellent guiding platform for precise controlled localization of maghemite nanoparticles (MNPs). Diblock copolymers (di/BCP) represent the most applied matrix to host filler components due to their morphological simplicity. A series of nanocomposites based on diblock copolymer or triblock terpolymer matrices and magnetic nanoparticles were prepared to study and compare the influence of an additional block into the BCP matrix.
View Article and Find Full Text PDFFluorographene, a two-dimensional derivative of graphene, is an excellent starting material for the synthesis of graphene derivatives. In this work, a one-step, substrate-free method for the asymmetric functionalization of fluorographene layers with hydroxyl groups by a facile nucleophilic substitution reaction is reported. Such a chemical modification occurs in a biphasic aqueous-organic system under mild conditions, leading to Janus graphene nanosheets functionalized by hydroxyl groups on one side and retaining fluorine atoms on the other.
View Article and Find Full Text PDFMuch of the research effort concerning layered materials is directed toward their use as building blocks for the development of hybrid nanostructures with well-defined dimensions and behavior. Here, we report the fabrication through layer-by-layer deposition and intercalation chemistry of a new type of clay-based hybrid film, where functionalized carbon nanotubes are sandwiched between nanometer-sized smectite clay platelets. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized in a single step with phenol groups, via 1,3-dipolar cycloaddition, to allow for stable dispersion in polar solvents.
View Article and Find Full Text PDFThe scientific and technological potential of graphene's includes the development of light, open 3D hybrid structures with high surface area, tunable pore size and aromatic functionalities. Towards this aim, we describe a scalable and low-cost bottom-up approach that combines self-assembly and Langmuir-Schaefer deposition for the production of fullerene-intercalated graphene oxide hybrids. This method uses graphene oxide (GO) nanosheets as template for the attachment of two types of fullerene derivatives (bromo-fullerenes, CBr and fullerols, C(OH)) in a bi-dimensional arrangement, allowing a layer-by-layer growth with control at nanoscale.
View Article and Find Full Text PDFTwo easy approaches are successfully employed for the preparation of nitrogen-doped carbon nanodot (NCND)-clay hybrids (bulk solids and thin films). Fluorescent and small NCNDs are intercalated within the interlayer space of LAPONITE® clay with a simple ion exchange reaction in bulk or embedded between functionalized LAPONITE® sheets by combining a layer-by-layer approach with a self-assembly process. In both cases, homogeneous hybrids with 2D-ordered NCNDs (accounting for >20 wt%) are produced, with the NCND optoelectronic properties preserved.
View Article and Find Full Text PDFThe special electronic, optical, thermal, and mechanical properties of graphene resulting from its 2D nature, as well as the ease of functionalizing it through a simple acid treatment, make graphene an ideal building block for the development of new hybrid nanostructures with well-defined dimensions and behavior. Such hybrids have great potential as active materials in applications such as gas storage, gas/liquid separation, photocatalysis, bioimaging, optoelectronics, and nanosensing. In this study, luminescent carbon dots (C-dots) were sandwiched between oxidized graphene sheets to form novel hybrid multilayer films.
View Article and Find Full Text PDFThis work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e.
View Article and Find Full Text PDFMulti-layer graphene oxide-enzyme nanoassemblies were prepared through the multi-point covalent immobilization of laccase from Trametes versicolor (TvL) on functionalized graphene oxide (fGO). The catalytic properties of the fGO-TvL nanoassemblies were found to depend on the number of the graphene oxide-enzyme layers present in the nanostructure. The fGO-TvL nanoassemblies exhibit an enhanced thermal stability at 60 °C, as demonstrated by a 4.
View Article and Find Full Text PDFIn this study we report the ability of reduced and non-reduced graphene oxide-based nanomaterials (GONs), modified with variable alkyl chain length and terminal functional groups, to act as effective scaffolds for the immobilization of cytochrome c (cyt c) using different immobilization procedures. The GONs/cyt c conjugates are characterized by a combination of techniques, namely atomic force microscopy, X-ray photoelectron and FT-IR spectroscopies as well as thermo-gravimetric and differential thermal analysis. The effect of the structure of functional groups and the surface chemistry of GONs on the immobilization efficiency, the peroxidase activity and the stability of the cyt c was investigated and correlated with conformational changes on the protein molecule upon immobilization.
View Article and Find Full Text PDFWe present the preparation of disk-like graphene nanoflakes, highly dispersible in dimethylformamide (DMF), with uniform size and thickness. The preparation procedure includes an overnight mild sonication of natural graphite in DMF, followed by a purification step using ultra-centrifugation. The mean diameter of the as produced well defined round shaped graphene nanoflakes is about 100 nm and they consisted of less than twenty graphenic layers.
View Article and Find Full Text PDFThe hydroxyphenyl derivatives of carbon nanostructures (graphene and carbon nanotubes) can be easily transformed into highly organophilic or hydrophilic derivatives by using the ionic interactions between the phenolic groups and oleylamine or tetramethylammonium hydroxide, respectively. The products were finely dispersed in homo-polymers or block co-polymers to create homogeneous carbon-based nanocomposites and were used as nanocarriers for the dispersion and protection of strongly hydrophobic compounds, such as large aromatic chromophores or anticancer drugs in aqueous solutions.
View Article and Find Full Text PDF