Interference with the signaling activity of the N-myristoylated nonreceptor protein tyrosine kinase Src is considered a viable approach in anti-cancer drug discovery. However, ATP-competitive Src inhibitors have not reached the clinic yet and alternative approaches are in high demand. The UNC119A/B proteins bind the myristoylated N terminus of Src and thereby mediate energy-driven spatial cycles that maintain Src enrichment at the plasma membrane, which is critical for Src signaling activity.
View Article and Find Full Text PDFThe peripheral membrane proto-oncogene Src family protein tyrosine kinases relay growth factor signals to the cytoplasm of mammalian cells. We unravel the spatial cycles of solubilisation, trapping on perinuclear membrane compartments and vesicular transport that counter entropic equilibration to endomembranes for maintaining the enrichment and activity of Src family protein tyrosine kinases at the plasma membrane. The solubilising factor UNC119 sequesters myristoylated Src family protein tyrosine kinases from the cytoplasm, enhancing their diffusion to effectively release Src family protein tyrosine kinases on the recycling endosome by localised Arl2/3 activity.
View Article and Find Full Text PDFThe dynamics of molecules in living cells hampers precise imaging of molecular patterns by functional and super-resolution microscopy. We developed a method that circumvents lethal chemical fixation and allows on-stage cryo-arrest for consecutive imaging of molecular patterns within the same living, but arrested, cells. The reversibility of consecutive cryo-arrests was demonstrated by the high survival rate of different cell lines and by intact growth factor signaling that was not perturbed by stress response.
View Article and Find Full Text PDFSince the identification of the membrane-bound O-acyltransferase (MBOATs) protein family in the early 2000s, three distinct members [porcupine (PORCN), hedgehog (Hh) acyltransferase (HHAT) and ghrelin O-acyltransferase (GOAT)] have been shown to acylate specific proteins or peptides. In this review, topology determination, development of assays to measure enzymatic activities and discovery of small molecule inhibitors are compared and discussed for each of these enzymes.
View Article and Find Full Text PDFSonic Hedgehog protein (Shh) is a morphogen molecule important in embryonic development and in the progression of many cancer types in which it is aberrantly overexpressed. Fully mature Shh requires attachment of cholesterol and palmitic acid to its C- and N-termini, respectively. The study of lipidated Shh has been challenging due to the limited array of tools available, and the roles of these posttranslational modifications are poorly understood.
View Article and Find Full Text PDFOverexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum.
View Article and Find Full Text PDFWe applied fluorescence lifetime imaging microscopy to map the microenvironment of the myosin essential light chain (ELC) in permeabilized skeletal muscle fibers. Four ELC mutants containing a single cysteine residue at different positions in the C-terminal half of the protein (ELC-127, ELC-142, ELC-160, and ELC-180) were generated by site-directed mutagenesis, labeled with 7-diethylamino-3-((((2-iodoacetamido)ethyl)amino)carbonyl)coumarin, and introduced into permeabilized rabbit psoas fibers. Binding to the myosin heavy chain was associated with a large conformational change in the ELC.
View Article and Find Full Text PDFThe discoidin domain receptors, DDR1 and DDR2, are widely expressed receptor tyrosine kinases that are activated by triple-helical collagen. They control important aspects of cell behavior and are dysregulated in several human diseases. The major DDR2-binding site in collagens I-III is a GVMGFO motif (O is hydroxyproline) that also binds the matricellular protein SPARC.
View Article and Find Full Text PDFFibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. We have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III.
View Article and Find Full Text PDFThe discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III.
View Article and Find Full Text PDF