Among vertebrates, several specific proteins are involved in the function and development of gonads. Several genes such as SOX9, FOXL2, DDX4, IFITM3, and DPPA3, are active during embryonic differentiation and maintain their expression in adult tissues, playing important roles in the function and development of the line cell, where these are produced. Among reptiles, molecular mechanisms for sex differentiation have been analyzed in turtles, crocodiles, and some lizards, while in adult stages such studies are scarce.
View Article and Find Full Text PDFIt is generally considered that, in mammals, the ovary is endowed with a finite number of oocytes at the time of birth. However, studies concerning rodents, lemurs and humans suggest the existence of stem cells from the germline that may be involved in germ-cell renewal, maintaining postnatal follicle development. This type of work on wild species is scarce; therefore the objective of this study was to determine ovarian morphology and the presence of progenitor cells from the germline of three species of phyllostomid bats (Artibeus jamaicensis, Glossophaga soricina and Sturnira lilium).
View Article and Find Full Text PDFB6.Y(Tir) (mice with Y chromosome from a strain in Tirano, Italy, and autosomes and X-chromosomes from the B6 strain) mice provide an excellent model for analysing sex development that occurs during gonadal differentiation; however, the molecular mechanisms that contribute to sex reversal are unclear. Our aim has been to establish which molecular events participate in this sex reversal.
View Article and Find Full Text PDF