Publications by authors named "Antonio Tristan Vega"

White matter alterations are increasingly implicated in neurological diseases and their progression. International-scale studies use diffusion-weighted magnetic resonance imaging (DW-MRI) to qualitatively identify changes in white matter microstructure and connectivity. Yet, quantitative analysis of DW-MRI data is hindered by inconsistencies stemming from varying acquisition protocols.

View Article and Find Full Text PDF

The term free-water volume fraction (FWVF) refers to the signal fraction that could be found as the cerebrospinal fluid of the brain, which has been demonstrated as a sensitive measure that correlates with cognitive performance and various neuropathological processes. It can be quantified by properly fitting the isotropic component of the magnetic resonance (MR) signal in diffusion-sensitized sequences. Using N=287 healthy subjects (178F/109M) aged 25-94, this study examines in detail the evolution of the FWVF obtained with the spherical means technique from multi-shell acquisitions in the human brain white matter across the adult lifespan, which has been previously reported to exhibit a positive trend when estimated from single-shell data using the bi-tensor signal representation.

View Article and Find Full Text PDF

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients.

View Article and Find Full Text PDF

Diffusion Tensor Imaging (DTI) is the most employed method to assess white matter properties using quantitative parameters derived from diffusion MRI, but it presents known limitations that restrict the evaluation of complex structures. The objective of this study was to validate the reliability and robustness of complementary diffusion measures extracted with a novel approach, Apparent Measures Using Reduced Acquisitions (AMURA), with a typical diffusion MRI acquisition from a clinical context in comparison with DTI with application to clinical studies. Fifty healthy controls, 51 episodic migraine and 56 chronic migraine patients underwent single-shell diffusion MRI.

View Article and Find Full Text PDF

Purpose: The aim of this paper is to show that geometrical criteria for designing multishell -space sampling procedures do not necessarily translate into reconstruction matrices with high figures of merit commonly used in the compressed sensing theory. In addition, we show that a well-known method for visiting k-space in radial three-dimensional acquisitions, namely, the Spiral Phyllotaxis, is a competitive initialization for the optimization of our nonconvex objective function.

Theory And Methods: We propose the gradient design method WISH (WeIghting SHells) which uses an objective function that accounts for weighted distances between gradients within M-tuples of consecutive shells, with ranging between 1 and the maximum number of shells .

View Article and Find Full Text PDF

Hybrid Diffusion Imaging (HYDI) was one of the first attempts to use multi-shell samplings of the q-space to infer diffusion properties beyond Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI). HYDI was intended as a flexible protocol embedding both DTI (for lower b-values) and HARDI (for higher b-values) processing, as well as Diffusion Spectrum Imaging (DSI) when the entire data set was exploited. In the latter case, the spherical sampling of the q-space is re-gridded by interpolation to a Cartesian lattice whose extent covers the range of acquired b-values, hence being acquisition-dependent.

View Article and Find Full Text PDF

Purpose: We seek to reformulate the so-called Propagator Anisotropy (PA) and Non-Gaussianity (NG), originally conceived for the Mean Apparent Propagator diffusion MRI (MAP-MRI), to the Micro-Structure adaptive convolution kernels and dual Fourier Integral Transforms (MiSFIT). These measures describe relevant normalized features of the Ensemble Average Propagator (EAP).

Theory And Methods: First, the indices, which are defined as the EAP's dissimilarity from an isotropic (PA) or a Gaussian (NG) one, are analytically reformulated within the MiSFIT framework.

View Article and Find Full Text PDF

We propose a method that can provide information about the anisotropy and orientation of diffusion in the brain from only 3 orthogonal gradient directions without imposing additional assumptions. The method is based on the Diffusion Anisotropy (DiA) that measures the distance from a diffusion signal to its isotropic equivalent. The original formulation based on a Spherical Harmonics basis allows to go down to only 3 orthogonal directions in order to estimate the measure.

View Article and Find Full Text PDF

AMURA (Apparent Measures Using Reduced Acquisitions) was originally proposed as a method to infer micro-structural information from single-shell acquisitions in diffusion MRI. It reduces the number of samples needed and the computational complexity of the estimation of diffusion properties of tissues by assuming the diffusion anisotropy is roughly independent on the b-value. This simplification allows the computation of simplified expressions and makes it compatible with standard acquisition protocols commonly used even in clinical practice.

View Article and Find Full Text PDF

Purpose: To accurately estimate the partial volume fraction of free water in the white matter from diffusion MRI acquisitions not demanding strong sensitizing gradients and/or large collections of different b-values. Data sets considered comprise 32-64 gradients near plus 6 gradients near .

Theory And Methods: The spherical means of each diffusion MRI set with the same b-value are computed.

View Article and Find Full Text PDF

Purpose: The apparent propagator anisotropy (APA) is a new diffusion MRI metric that, while drawing on the benefits of the ensemble averaged propagator anisotropy (PA) compared to the fractional anisotropy (FA), can be estimated from single-shell data.

Theory And Methods: Computation of the full PA requires acquisition of large datasets with many diffusion directions and different b-values, and results in extremely long processing times. This has hindered adoption of the PA by the community, despite evidence that it provides meaningful information beyond the FA.

View Article and Find Full Text PDF

A number of computational techniques have been lately devised to image the Ensemble Average Propagator (EAP) within the white matter of the brain, propelled by the deployment of multi-shell acquisition protocols and databases: approaches like Mean Apparent Propagator Imaging (MAP-MRI) and its Laplacian-regularized version (MAPL) aim at describing the low frequency spectrum of the EAP (limited by the maximum b-value acquired) and afterwards computing scalar indices that embed useful descriptions of the white matter, e. g. the Return-to-Origin, Plane, or Axis Probabilities (RTOP, RTPP, RTAP).

View Article and Find Full Text PDF

In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant micro-structural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like Diffusion Tensor Imaging (DTI). The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space involving a huge amount of samples (diffusion gradients) for proper reconstruction. A collection of more efficient techniques have been proposed in the last decade based on parametric representations of the EAP, but they still imply acquiring a large number of diffusion gradients with different b-values (shells).

View Article and Find Full Text PDF

An imaging biomarker is a biologic feature in an image that is relevant to a patient's diagnosis or prognosis. In order to qualify as a biomarker, a measure must be robust and reproducible. However, the usual scalar measures derived from diffusion tensor imaging are known to be highly dependent on the variation of the acquisition parameters, which prevents their possible use as biomarkers.

View Article and Find Full Text PDF

Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique.

View Article and Find Full Text PDF

We propose a novel formulation for relaxed analysis-based sparsity in multiple dictionaries as a general type of prior for images, and apply it for Bayesian estimation in image restoration problems. Our formulation of a ℓ2-relaxed ℓ0 pseudo-norm prior allows for an especially simple maximum a posteriori estimation iterative marginal optimization algorithm, whose convergence we prove. We achieve a significant speedup over the direct (static) solution by using dynamically evolving parameters through the estimation loop.

View Article and Find Full Text PDF

Background And Purpose: Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge, an international working group of clinicians and scientists whose goal was to provide standardized evaluation of tractography methods for neurosurgery.

View Article and Find Full Text PDF

Purpose: GRAPPA is a well-known parallel imaging method that recovers the MR magnitude image from aliasing by using a weighted interpolation of the data in k-space. To estimate the optimal reconstruction weights, GRAPPA uses a band along the center of the k-space where the signal is sampled at the Nyquist rate, the so-called autocalibrated (ACS) lines. However, while the subsampled lines usually belong to the medium- to high-frequency areas of the spectrum, the ACS lines include the low-frequency areas around the DC component.

View Article and Find Full Text PDF

Parallel imaging methods allow to increase the acquisition rate via subsampled acquisitions of the k-space. SENSE and GRAPPA are the most popular reconstruction methods proposed in order to suppress the artifacts created by this subsampling. The reconstruction process carried out by both methods yields to a variance of noise value which is dependent on the position within the final image.

View Article and Find Full Text PDF

Recently, some methods have been proposed for filtering multi-coil MRI acquisitions with correlation between coils. Those methods are based on statistical models of noise to develop a Linear Minimum Mean Square Error (LMMSE) filter. The advantage of LMMSE-based filters stems from their simplicity and robustness.

View Article and Find Full Text PDF

Parallel imaging methods allow to increase the acquisition rate via subsampled acquisitions of the k-space. SENSE is one of the most popular reconstruction methods proposed in order to suppress the artifacts created by this subsampling. However, the SENSE reconstruction process yields to a variance of noise value which is dependent on the position within the image.

View Article and Find Full Text PDF

We present a new method for denoising of Diffusion Weighted Images (DWI) that shares several desirable features of state-of-the-art proposals: 1) it works with the squared-magnitude signal, allowing for a closed-form formulation as a Linear Minimum Mean Squared Error (LMMSE) estimator, a.k.a.

View Article and Find Full Text PDF

Parallel magnetic resonance imaging (MRI) yields noisy magnitude data, described in most cases as following a noncentral χ distribution when the signals received by the coils are combined as the sum of their squares. One well-known case of this noncentral χ noise model is the Rician model, but it is only valid in the case of single-channel acquisition. Although the use of parallel MRI is increasingly common, most of the correction methods still perform Rician noise removal, yielding an erroneous result due to an incorrect noise model.

View Article and Find Full Text PDF

Modern magnetic resonance (MR) imaging protocols based on multiple-coil acquisitions have carried on a new attention to noise and signal statistical modeling, as long as most of the existing techniques for data processing are model based. In particular, nonaccelerated multiple-coil and GeneRalized Autocalibrated Partially Parallel Acquisitions (GRAPPA) have brought noncentral-χ (nc-χ) statistics into stake as a suitable substitute for traditional Rician distributions. However, this model is only valid when the signals received by each coil are roughly uncorrelated.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) constitutes the most used paradigm among the diffusion-weighted magnetic resonance imaging (DW-MRI) techniques due to its simplicity and application potential. Recently, real-time estimation in DW-MRI has deserved special attention, with several proposals aiming at the estimation of meaningful diffusion parameters during the repetition time of the acquisition sequence. Specifically focusing on DTI, the underlying model of the noise present in the acquired data is not taken into account, leading to a suboptimal estimation of the diffusion tensor.

View Article and Find Full Text PDF