Publications by authors named "Antonio Tirelli"

Riboflavin (RF), or vitamin B2, is an essential compound for yeast growth and a precursor of the flavin coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), involved in redox and non-redox processes. RF is a photosensitive compound involved in the light-struck taste (LST), a fault causing the formation of off-flavors that can develop when the wine is exposed to light in the presence of methionine (Met), as well. As both RF and Met can be associated with detrimental changes in wines, a better comprehension of its yeast-mediated production is relevant to predict the maintenance of the desired character of the wine.

View Article and Find Full Text PDF

A Box-Behnken experimental design was implemented in model wine (MW) to clarify the impact of copper, iron, and oxygen in the photo-degradation of riboflavin (RF) and methionine (Met) by means of response surface methodology (RSM). Analogous experiments were undertaken in MW containing caffeic acid or catechin. The results evidenced the impact of copper, iron, and oxygen in the photo-induced reaction between RF and Met.

View Article and Find Full Text PDF

The light-struck taste (LST) is a fault occurring in white and rosé wines associated to the formation of volatile sulfur compounds (VSCs) due to the reactions between riboflavin (RF) and methionine (Met). We investigated the possible preventing effect of 15 commercial tannins of different origin in model wine added with RF and Met, under oxic and anoxic conditions, and submitted to standardized light-exposure. All the tannins limited the degradation of Met in comparison to the tannin-free samples.

View Article and Find Full Text PDF

Light exposure of white wine can cause a light-struck taste (LST), a fault induced by riboflavin (RF) and methionine (Met) leading to the formation of volatile sulfur compounds (VSCs), including methanethiol (MeSH) and dimethyl disulfide (DMDS). The study aimed to investigate the impact of different antioxidants, i.e.

View Article and Find Full Text PDF

Several changes can take place in wine after blotting. Some of them lead to the desired evolution of wine being more complex, round and pleasant. However, unexpected changes can also occur ascribable to the premature wine oxidation (PremOx) arising when a wine, presumably with aging potential, results oxidized and often undrinkable.

View Article and Find Full Text PDF

The discovery of new mechanisms of resistance and natural bioactive molecules could be two of the possible ways to reduce fungicide use in vineyard and assure an acceptable and sustainable protection against Plasmopara viticola, the grapevine downy mildew agent. Emission of volatile organic compounds (VOCs), such as terpenes, norisoprenoids, alcohols and aldehydes, is frequently induced in plants in response to attack by pathogens, such as P. viticola, that is known to cause a VOCs increment in cultivars harboring American resistance traits.

View Article and Find Full Text PDF

Riboflavin (RF) is a well-known photosensitizer, responsible for the light-induced oxidation of methionine (Met) leading to the spoilage of wine. An NMR approach was used to investigate the role of gallic acid (GA) and sulfur dioxide (SO) in the RF-mediated photo-oxidation of Met. Water solutions of RF and Met, with and without GA or SO, were exposed to visible light for increasing time in both air and nitrogen atmospheres.

View Article and Find Full Text PDF

Health-promoting effects of plant foods have been emphasized in the last few decades and ascribed to the bioactive phytochemicals present therein-in particular, phenylpropanoids. The latter have been investigated for a number of preclinical biological activities, including their antioxidant power. Due to the paucity of human studies, in this randomized intervention trial, we investigated whether the acute intake of pigmented rice could increase the plasma bioactive levels and antiradical power in twenty healthy subjects.

View Article and Find Full Text PDF

Pigmented rice cultivars, namely Venere and Artemide, are a source of bioactive molecules, in particular phenolics, including anthocyanins, exerting a positive effect on cardiovascular systems thanks also to their antioxidant capacity. This study aimed to determine the total phenol index (TPI), total flavonoids (TF), total anthocyanins (TA) and in vitro antioxidant capacity in 12 batches of Venere cultivar and two batches of Artemide cultivar. The rice was cooked using different methods (boiling, microwave, pressure cooker, water bath, rice cooker) with the purpose to individuate the procedure limiting the loss of bioactive compounds.

View Article and Find Full Text PDF

Oxidations in grape berries are gaining major interest as they affect grape characteristics and quality. Considering berries, Reactive Oxygen Species are involved in the responses to both ripening process and stresses, including photooxidative sunburn. Redox metabolism involves a multitude of chemical and enzymatic reactions.

View Article and Find Full Text PDF

Malolactic fermentation (MLF) in Valtellina Superiore DOCG red wine was monitored in 4 cellars and the final products were analysed to determine the content of melatonin (MEL) and other tryptophan (TRP) derivatives, including tryptophan ethyl ester (TEE) and MEL isomers (MISs), and to isolate predominant O. oeni strains. MEL and TEE significantly increased in wines after MLF from two cellars out of four.

View Article and Find Full Text PDF

The riboflavin-mediated photo-degradation of methionine in white wine has been related to onset of undesired light-struck taste. This research investigated the effects of different concentrations of riboflavin and methionine, hydrolysable tannins from various sources (nut galls, chestnut and oak woods) and sulfur dioxide on methionine degradation in a model wine exposed to light. Increased methionine concentration resulted in its increased degradation with the consequent formation of volatile sulfur compounds, namely methanethiol, dimethyl disulphide and dimethyl trisulphide.

View Article and Find Full Text PDF

Melatonin (MEL) is an indoleamine produced mainly by the pineal gland in vertebrates. It plays a significant role in the regulation of circadian rhythms, mitigation of sleeping disorders, and jet lag. This compound is synthetized from tryptophan (TRP) and it has been found in seeds, fruits, and fermented beverages, including wine.

View Article and Find Full Text PDF

Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed.

View Article and Find Full Text PDF

Melatonin (MEL) has been found in some medicinal and food plants, including grapevine, a commodity of particular interest for the production of wine, a beverage of economic relevance. It has also been suggested that MEL in wine may, at least in part, contribute to the health-promoting properties attributed to this beverage and, possibly, to other traditional Mediterranean foodstuffs. After a preliminary screening of 9 yeast strains in laboratory medium, three selected strains (Saccharomyces cerevisiae EC1118, Torulaspora delbrueckii CBS1146(T) and Zygosaccharomyces bailii ATCC36947(T) ) were inoculated in experimental musts obtained from 2 white (Moscato and Chardonnay) and 2 red (Croatina and Merlot) grape varieties.

View Article and Find Full Text PDF

Sulphur dioxide (SO2) proved to increase absorbance at 280 nm of grape skin and seed extracts containing it, diluted with ethanol-HCl to assess total flavonoids and anthocyanins in the same analysis. Additional absorbance at 280 nm was also observed in acetone:H2O extracts, if the acetone had not completely evaporated before the extracts were diluted with a solvent. Flavonoids were correctly quantified in the extracts when SO2 or acetone were removed by solid-phase extraction with a C18 RP as sorbent and methanol as eluting solvent.

View Article and Find Full Text PDF

Sotolon has been reported to play an important role in the atypical ageing and aroma character of many wines. A number of analytical techniques for sotolon analysis in wine have been reported, but these often require extensive sample preparation. In this work we report a HPLC-UV method and a novel UPLC-MS method to determine sotolon concentrations in white wines with little sample preparation applied for the first time for the evaluation of sotolon levels in South African wines.

View Article and Find Full Text PDF

Sotolon (4,5-dimethyl-3-hydroxy-2,5-dihydrofuran-2-one) is a volatile compound involved in the atypical aging of dry white wine, causing an irreversible defect when it exceeds 7-8 μg L(-1), and it might be adopted as a chemical marker of oxidative aging. An easier and sensitive ultrahigh-pressure liquid chromatography method for its determination in white wine is reported. The sample preparation is based on the liquid/liquid extraction by dichloromethane and the purification by solid phase extraction of the redissolved dry sample.

View Article and Find Full Text PDF

The effect of different sulphur dioxide concentrations on culturability and viability of seven strains of Brettanomyces bruxellensis was tested in a synthetic wine medium (SWM) and a different response to molecular SO(2) among strains was detected. Sulphur dioxide induced a viable but non culturable (VBNC) state in all the strains. The greater percentage of VBNC cells were identified for five strains at molecular SO(2) concentrations of 0.

View Article and Find Full Text PDF

Compounds containing cysteine residues, such as glutathione, can affect the redox potential of must and wine by reduction of o-quinones and hydrogen peroxide. The oenological yeast cell wall fractions contain cysteine residues in their protein structure, and they could affect both oxidative and odor properties of wine. An analytical approach based on the derivatization of cysteinyl residues with p-benzoquinone followed by reversed-phase high-performance liquid chromatography separation was developed to quantify glutathione and free and protein cysteine in 16 Saccharomyces cerevisiae strains and 12 commercial samples of yeast mannoproteins, hulls, and lysates.

View Article and Find Full Text PDF

Spontaneous MLF in high acidity wines produced in cool-climate regions remains problematic though indispensable for the development of sensory characteristics. Genetic aspects and phenotypic traits of thirty-six Oenococcus oeni strains, most of them isolated from Valtellina wines over three consecutive years, were investigated. Molecular typing achieved by RAPD PCR and PFGE analyses allowed 27 different genotypes to be discriminated, whereas from the comparison of results arising by physiological tests (sugar fermentation, alcohol resistance, growth at low temperatures, biogenic ammines production) 28 different phenotypic profiles were obtained.

View Article and Find Full Text PDF

Contamination of wine by Dekkera/Brettanomyces bruxellensis is mostly due to the production of off-flavours identified as vinyl- and especially ethyl-phenols, but these yeasts can also produce several other spoiling metabolites, such as acetic acid and biogenic amines. Little information is available about the correlation between growth, viability and off-flavour and biogenic amine production. In the present work, five strains of Dekkera bruxellensis isolated from wine were analysed over 3 months in wine-like environment for growth, cell survival, carbon source utilization and production of volatile phenols and biogenic amines.

View Article and Find Full Text PDF