Publications by authors named "Antonio Santidrian"

We describe the repurposing and optimization of the TK-positive (thymidine kinase) vaccinia virus strain ACAM1000/ACAM2000™ as an oncolytic virus. This virus strain has been widely used as a smallpox vaccine and was also used safely in our recent clinical trial in patients with advanced solid tumors and Acute Myeloid Leukemia (AML). The vaccinia virus was amplified in CV1 cells and named CAL1.

View Article and Find Full Text PDF

In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic.

View Article and Find Full Text PDF

Background: ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Background: Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties.

Methods: To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors.

View Article and Find Full Text PDF

Background: Stromal vascular fraction (SVF) represents an attractive source of adult stem cells and progenitors, holding great promise for numerous cell therapy approaches. In 2017, it was reported that 1524 patients received autologous SVF following the enzymatic digestion of liposuction fat. The treatment was safe and effective and patients showed significant clinical improvement.

View Article and Find Full Text PDF

Background: Cancer cells that enter the metastatic cascade require traits that allow them to survive within the circulation and colonize distant organ sites. As disseminating cancer cells adapt to their changing microenvironments, they also modify their metabolism and metabolite production.

Methods: A mouse xenograft model of spontaneous tumor metastasis was used to determine the metabolic rewiring that occurs between primary cancers and their metastases.

View Article and Find Full Text PDF

Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer.

View Article and Find Full Text PDF

Fluorocarbons are lipophobic and non-polar molecules that exhibit remarkable biocompatibility, with applications in liquid ventilation and synthetic blood. The unique properties of these compounds have also enabled mass spectrometry imaging of tissues where the fluorocarbons act as a Teflon-like coating for nanostructured surfaces to assist in desorption/ionization. Here we report fluorinated gold nanoparticles (f-AuNPs) designed to facilitate nanostructure imaging mass spectrometry.

View Article and Find Full Text PDF

NAD(+) metabolism is an essential regulator of cellular redox reactions, energy pathways, and a substrate provider for NAD(+) consuming enzymes. We recently demonstrated that enhancement of NAD(+)/NADH levels in breast cancer cells with impaired mitochondrial NADH dehydrogenase activity, through augmentation of complex I or by supplementing tumor cell nutrients with NAD(+) precursors, inhibits tumorigenicity and metastasis. To more fully understand how aberrantly low NAD(+) levels promote tumor cell dissemination, we here asked whether inhibition of NAD(+) salvage pathway activity by reduction in nicotinamide phosphoribosyltransferase (NAMPT) expression can impact metastasis and tumor cell adhesive functions.

View Article and Find Full Text PDF

Despite advances in clinical therapy, metastasis remains the leading cause of death in breast cancer patients. Mutations in mitochondrial DNA, including those affecting complex I and oxidative phosphorylation, are found in breast tumors and could facilitate metastasis. This study identifies mitochondrial complex I as critical for defining an aggressive phenotype in breast cancer cells.

View Article and Find Full Text PDF

Aim: To analyze the methylation status of 35 tumor suppressor genes using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in chronic lymphocytic leukemia (CLL).

Materials & Methods: The DNA of 37 samples from patients with CLL, six healthy donors, and Jurkat and Ramos cell lines was analyzed by MS-MLPA.

Results: Our results confirm that hypermethylation is a common and not randomly distributed event in CLL, and some genes, such as WT1, CDH13, IGSF4/TSLC1, GATA5, DAPK1 and RARB, are hypermethylated in more than 25% of the analyzed samples.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging.

View Article and Find Full Text PDF

5-Aminoimidazole-4-carboxamide riboside or acadesine (AICAR) induces apoptosis in chronic lymphocytic leukemia (CLL) cells. A clinical study of AICAR is currently being performed in patients with this disease. Here, we have analyzed the mechanisms involved in AICAR-induced apoptosis in CLL cells in which it activates its only well-known molecular target, adenosine monophosphate-activated protein kinase (AMPK).

View Article and Find Full Text PDF

Multiple E2F1 phosphorylation sites have been described as targets of different kinases, yet their in vivo implication is uncertain. We previously reported that GSK3beta is able to phosphorylate E2F1 in vitro at Ser403 and Ser433. Recently, it has been shown that both residues are also direct targets of p38 MAP kinase.

View Article and Find Full Text PDF

Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in most cell types. In this study we examined the mechanism of aspirin-induced apoptosis in human leukemia cells. We analyzed the role of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPKs) pathways.

View Article and Find Full Text PDF

Background: The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells.

Design And Methods: Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors.

View Article and Find Full Text PDF

Dopamine at 100-500 microM has toxic effects on human SH-SY5Y neuroblastoma cells, manifested as apoptotic cell loss and strong autophagy. The molecular mechanisms and types of dopamine-induced cell death are not yet well known. Their identification is important in the study of neurodegenerative diseases that specifically involve dopaminergic neurons.

View Article and Find Full Text PDF

Fructose 1,6-P2 (F1,6BP) protects rat liver against experimental hepatitis induced by galactosamine (GalN) by means of two parallel effects: prevention of inflammation, and reduction of hepatocyte sensitization to tumour necrosis factor-alpha (TNF-alpha). In a previous paper we reported the underlying mechanism involved in the prevention of inflammation. In the present study, we examined the intracellular mechanisms involved in the F1,6BP inhibition of the apoptosis induced by TNF-alpha in parenchyma cells of GalN-sensitized rat liver.

View Article and Find Full Text PDF

Chronic lymphocytic leukaemia (CLL) is the commonest form of leukaemia in adults in Western countries. We performed multiplex ligation-dependent probe amplification (MLPA) analysis in 50 CLL patients to identify multiple genomic CLL-specific targets, including genes located at 13q14, 17p13 (TP53), 11q23 (ATM) and chromosome 12, and compared the results with those obtained with fluorescence in situ hybridization (FISH). There was a good correlation between MLPA and FISH results, as most alterations (89%) were detected by both techniques.

View Article and Find Full Text PDF

Background And Objectives: The potential anticancer agent 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a translocator protein (18KDa) (TSPO) ligand, facilitates the induction of cell death by a variety of cytotoxic and chemotherapeutic agents. Primary chronic lymphocytic leukemia (CLL) cells overexpress TSPO. The aim of this study was to examine the effects of PK11195 on CLL cells.

View Article and Find Full Text PDF

Objective: Antiapoptotic Bcl-2 is overexpressed in most cases of chronic lymphocytic leukemia (CLL). The inhibition of the antiapoptotic Bcl-2 proteins is an attractive strategy for either restoring normal apoptotic process in cancer cells or making these cells more susceptible to conventional chemotherapy. We studied the effect of Bcl-2 inhibitors on the viability of cells from CLL and other mature B-cell neoplasms.

View Article and Find Full Text PDF

Apoptosis of B cell chronic lymphocytic leukemia (B-CLL) cells is regulated by the PI-3K-Akt pathway. In the present work, we have analyzed the mechanisms of Akt phosphorylation in B-CLL cells. Freshly isolated cells present basal Akt phosphorylation, which is PI-3K-dependent, as incubation with the PI-3K inhibitor LY294002 decreased Ser-473 and Thr-308 phosphorylation in most samples analyzed (seven out of 10).

View Article and Find Full Text PDF

B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived CD5(+) B lymphocytes. Several drugs currently used in the therapy of B-CLL act, at least partially, through activation of the p53 pathway. Recently, nongenotoxic small-molecule activators of p53, the nutlins, have been developed that inhibit p53-MDM2 binding.

View Article and Find Full Text PDF