Publications by authors named "Antonio S K Braz"

Microbial lipases play a pivotal role in a wide range of biotechnological processes and in the human skin microbiome. However, their evolution remains poorly understood. Accessing the evolutionary process of lipases could contribute to future applications in health and biotechnology.

View Article and Find Full Text PDF

Many receptors elicit signal transduction by activating multiple intracellular pathways. This transduction can be triggered by a non-specific ligand, which simultaneously activates all the signaling pathways of the receptors. However, the binding of one biased ligand preferentially trigger one pathway over another, in a process called biased signaling.

View Article and Find Full Text PDF

Ferulic acid (FA), a low-molecular weight aromatic compound derived from lignin, represents a high-value molecule, used for applications in the cosmetic and pharmaceutical industries. FA can be further enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. In several organisms, these transformations often start with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases (Fcs).

View Article and Find Full Text PDF

Change in cell morphogenesis is an important feature for proper development of eukaryotes. It is necessary for cell polarity and asymmetry and is essential for asymmetric cell division. RAM/MOR is a conserved signaling network that coordinates cell polarity determinants important for asymmetric cell division and cell polarity establishment.

View Article and Find Full Text PDF

There are two different prion conformations: (1) the cellular natural (PrP) and (2) the scrapie (PrP), an infectious form that tends to aggregate under specific conditions. PrP and PrP are widely different regarding secondary and tertiary structures. PrP contains more and longer β-strands compared to PrP.

View Article and Find Full Text PDF

Human cytomegalovirus is a ubiquitous infectious agent that affects mainly immunosuppressed, fetuses, and newborns. The virus has several polymorphic regions, in particular in the envelope glycoproteins. The UL55 gene encodes the glycoprotein B that has a variable region, containing a furin cleavage site and according to the variability different genotypes are characterized.

View Article and Find Full Text PDF

Dandruff is a prevalent chronic inflammatory skin condition of the scalp that has been associated with yeasts. However, the microbial role has not been elucidated yet, and the etiology of the disorder remains poorly understood. Using high-throughput 16S rDNA and ITS1 sequencing, we characterized cutaneous bacterial and fungal microbiotas from healthy and dandruff subjects, comparing scalp and forehead (lesional and non-lesional skin sites).

View Article and Find Full Text PDF

Inhibitor cystine knots (ICKs) are a family of structural peptides with a large number of cysteine residues that form intramolecular disulfide bonds, resulting in a knot. These peptides are involved in a variety of biological functions including predation and defense, and are found in various species, such as spiders, scorpions, sea anemones, and plants. The Loxosceles intermedia venom gland transcriptome identified five groups of ICK peptides that represent more than 50 % of toxin-coding transcripts.

View Article and Find Full Text PDF

Alpha solenoid proteins play a key role in regulating the classical nuclear import pathway, recognizing a target protein and transporting it into the nucleus. Importin-α (Impα) is the solenoid responsible for cargo protein recognition, and it has been extensively studied by X-ray crystallography to understand the binding specificity. To comprehend the main motions of Impα and to extend the information about the critical interactions during carrier-cargo recognition, we surveyed different conformational states based on molecular dynamics (MD) and normal mode (NM) analyses.

View Article and Find Full Text PDF

Thioredoxins are multifunctional oxidoreductase proteins implicated in the antioxidant cellular apparatus and oxidative stress. They are involved in several pathologies and are promising anticancer targets. Identification of noncatalytic binding sites is of great interest for designing new allosteric inhibitors of thioredoxin.

View Article and Find Full Text PDF

Despite their fundamental importance for growth, the mechanisms that regulate food intake are poorly understood. Our previous work demonstrated that insect sulfakinin (SK) signaling is involved in inhibiting feeding in an important model and pest insect, the red flour beetle Tribolium castaneum. Because the interaction of SK peptide and SK receptors (SKR) initiates the SK signaling, we have special interest on the structural factors that influence the SK-SKR interaction.

View Article and Find Full Text PDF

The emergence of drug resistant mutations due to the selective pressure exerted by antiretrovirals, including protease inhibitors (PIs), remains a major problem in the treatment of AIDS. During PIs therapy, the occurrence of primary mutations in the wild type HIV-1 protease reduces both the affinity for the inhibitors and the viral replicative capacity compared to the wild type (WT) protein, but additional mutations compensate for this reduced viral fitness. To investigate this phenomenon from the structural point of view, we combined Molecular Dynamics and Normal Mode Analysis to analyze and compare the variations of the flexibility of C-alpha atoms and the differences in hydrogen bond (h-bond) network between the WT and double mutants.

View Article and Find Full Text PDF

Endo-β-1,4-mannanase from Thermotoga petrophila (TpMan) is a hyperthermostable enzyme that catalyzes the hydrolysis of β-1,4-mannoside linkages in various mannan-containing polysaccharides. A recent study reported that TpMan is composed of a GH5 catalytic domain joined by a linker to a carbohydrate-binding domain. However, at this moment, there is no three-dimensional structure determined for TpMan.

View Article and Find Full Text PDF

Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.

View Article and Find Full Text PDF

The Thioredoxin (Trx) system plays important roles in several diseases (e.g. cancer, viral infections, cardiovascular and neurodegenerative diseases).

View Article and Find Full Text PDF

The antiretroviral chemotherapy helps to reduce the mortality of HIVs infected patients. However, RNA dependant virus replication has a high mutation rate. Human immunodeficiency virus Type 1 protease plays an essential role in viral replication cycle.

View Article and Find Full Text PDF

Phospholipases Aâ‚‚ (PLAâ‚‚s) are enzymes responsible for membrane disruption through Ca(2+) -dependent hydrolysis of phospholipids. Lys49-PLAâ‚‚s are well-characterized homologue PLAâ‚‚s that do not show catalytic activity but can exert a pronounced local myotoxic effect. These homologue PLAâ‚‚s were first believed to present residual catalytic activity but experiments with a recombinant toxin show they are incapable of catalysis.

View Article and Find Full Text PDF

Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and cause a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing, and host feminization. In this study, we used three sets of Wolbachia-specific primers (16S rDNA, ftsZ, and wsp) in conjunction with the polymerase chain reaction (PCR), cloning and sequencing to study the infection of fruit flies (Anastrepha spp. and Ceratitis capitata) by Wolbachia.

View Article and Find Full Text PDF

An L-amino acid oxidase (Bp-LAAO) from Bothrops pauloensis snake venom was highly purified using sequential chromatography steps on CM-Sepharose, Phenyl-Sepharose CL-4B, Benzamidine Sepharose and C18 reverse-phase HPLC. Purified Bp-LAAO showed to be a homodimeric acidic glycoprotein with molecular weight around 65kDa under reducing conditions in SDS-PAGE. The best substrates for Bp-LAAO were L-Met, L-Leu, L-Phe and L-Ile and the enzyme showed a strong reduction of its catalytic activity upon L-Met and L-Phe substrates at extreme temperatures.

View Article and Find Full Text PDF

BjussuMP-II is an acidic low molecular weight metalloprotease (Mr approximately 24,000 and pI approximately 6.5), isolated from Bothrops jararacussu snake venom. The chromatographic profile in RP-HPLC and its N-terminal sequence confirmed its high purity level.

View Article and Find Full Text PDF
Article Synopsis
  • BjussuSP-I is a thrombin-like enzyme from Bothrops jararacussu snake venom, characterized as an acidic glycoprotein with a molecular weight of 61,000 and a pI of approximately 3.8.
  • It exhibits high proteolytic activity on synthetic substrates and demonstrates procoagulant and kallikrein-like properties, but does not affect platelets or plasmin; its activities can be inhibited by specific enzyme inhibitors.
  • The enzyme's cDNA sequence encodes for 232 amino acids, showing significant structural homology with other snake venom thrombin-like enzymes, and the study highlights the role of N-linked glycans in enhancing its thrombin-like activity.
View Article and Find Full Text PDF

Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation, including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I, a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease.

View Article and Find Full Text PDF

RNase L inhibitors (RLIs) correspond to a group of soluble proteins from the large ATP binding cassette (ABC) family of proteins. Structurally, RLIs have an N-terminal Fe-S domain and two nucleotide binding domains. Orthologous RLI sequences with more than 48% identity have been found from Archea to Eukaryota, but have not as yet been identified in Eubacteria.

View Article and Find Full Text PDF