Objective: In epilepsy, high-frequency oscillations (HFOs) are expressively linked to the seizure onset zone (SOZ). The detection of HFOs in the noninvasive signals from scalp electroencephalography (EEG) and magnetoencephalography (MEG) is still a challenging task. The aim of this study was to automate the detection of ripples in MEG signals by reducing the high-frequency noise using beamformer-based virtual sensors (VSs) and applying an automatic procedure for exploring the time-frequency content of the detected events.
View Article and Find Full Text PDFObjective: Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods.
View Article and Find Full Text PDFObjective: One of the principal drawbacks of magnetoencephalography (MEG) is its high sensitivity to metallic artifacts, which come from implanted intracranial electrodes and dental ferromagnetic prosthesis and produce a high distortion that masks cerebral activity. The aim of this study was to develop an automatic algorithm based on blind source separation (BSS) techniques to remove metallic artifacts from MEG signals.
Approach: Three methods were evaluated: AMUSE, a second-order technique; and INFOMAX and FastICA, both based on high-order statistics.
Most patients with tuberous sclerosis complex (TSC) develop cortical tubers that cause severe neurological disabilities. It has been suggested that defects in neuronal differentiation and/or migration underlie the appearance of tubers. However, the precise molecular alterations remain largely unknown.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
Magnetoencephalography is a technique that can noninvasively measure the brain signal. There are many advantages of using this technique rather than similar procedures such as the EEG for the evaluation of medical diseases. However, one of its main problems is its high sensitivity to sources causing metallic distortion of the signal, and the removal of this type of artifacts remains unsolved.
View Article and Find Full Text PDFThere is not yet a formal definition of magnetoencephalography (MEG) spike. This study provides a parametric description and definition of clear-cut MEG spikes recorded simultaneously by MEG and depth electrodes (iEEG). A total number of 367 simultaneous MEG/iEEG spikes were selected for analysis.
View Article and Find Full Text PDFThe purpose of this study was to describe the methodology necessary for simultaneous recording of intracranial EEG (ICEEG) and magnetoencephalography (MEG) and to assess the sensitivity of whole-head MEG versus depth electrode EEG in the detection and localization of epileptic spikes. Interictal MEG and depth electrode activities from the temporal mesial and occipital lobes were simultaneously recorded from four candidates for epilepsy surgery. Implanted depth electrodes identified neocortical and mesial structures of ictal onset.
View Article and Find Full Text PDF