Publications by authors named "Antonio Rubio-Abadal"

The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, KPZ universality was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg model. We tested this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins.

View Article and Find Full Text PDF

Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances.

View Article and Find Full Text PDF

Versatile interfaces with strong and tunable light-matter interactions are essential for quantum science because they enable mapping of quantum properties between light and matter. Recent studies have proposed a method of controlling light-matter interactions using the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. However, a key aspect of this approach-the cooperative enhancement of the light-matter coupling strength and the directional mirror reflection of the incoming light using an array of quantum emitters-has not yet been experimentally demonstrated.

View Article and Find Full Text PDF

The subnanoscale size of typical diatomic molecules hinders direct optical access to their constituents. Rydberg macrodimers-bound states of two highly excited Rydberg atoms-feature interatomic distances easily exceeding optical wavelengths. We report the direct microscopic observation and detailed characterization of such molecules in a gas of ultracold rubidium atoms in an optical lattice.

View Article and Find Full Text PDF

A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice.

View Article and Find Full Text PDF