Publications by authors named "Antonio Robles-Kelly"

Timely and affordable computer-aided diagnosis of retinal diseases is pivotal in precluding blindness. Accurate retinal vessel segmentation plays an important role in disease progression and diagnosis of such vision-threatening diseases. To this end, we propose a Multi-resolution Contextual Network (MRC-Net) that addresses these issues by extracting multi-scale features to learn contextual dependencies between semantically different features and using bi-directional recurrent learning to model former-latter and latter-former dependencies.

View Article and Find Full Text PDF

Point cloud filtering and normal estimation are two fundamental research problems in the 3D field. Existing methods usually perform normal estimation and filtering separately and often show sensitivity to noise and/or inability to preserve sharp geometric features such as corners and edges. In this article, we propose a novel deep learning method to jointly estimate normals and filter point clouds.

View Article and Find Full Text PDF

Light field cameras (LFCs) have received increasing attention due to their wide-spread applications. However, current LFCs suffer from the well-known spatio-angular trade-off, which is considered an inherent and fundamental limit for LFC designs. In this article, by doing a detailed optical analysis of the sampling process in an LFC, we show that the effective resolution is generally higher than the number of micro-lenses.

View Article and Find Full Text PDF

This paper presents a method to recover a spatially varying illuminant color estimate from scenes lit by multiple light sources. Starting with the image formation process, we formulate the illuminant recovery problem in a statistically data-driven setting. To do this, we use a factor graph defined across the scale space of the input image.

View Article and Find Full Text PDF

In this paper, we present an unsupervised method for segmenting the illuminant regions and estimating the illumination power spectrum from a single image of a scene lit by multiple light sources. Here, illuminant region segmentation is cast as a probabilistic clustering problem in the image spectral radiance space. We formulate the problem in an optimization setting, which aims to maximize the likelihood of the image radiance with respect to a mixture model while enforcing a spatial smoothness constraint on the illuminant spectrum.

View Article and Find Full Text PDF

In this paper, we address the problem of efficiently recovering reflectance parameters from a single multispectral or hyperspectral image. To do so, we propose a shapelet based estimator that employs shapelets to recover the shading in the image. The optimization setting presented is based upon a three-step process.

View Article and Find Full Text PDF

In this paper, we address the problem of combining linear support vector machines (SVMs) for classification of large-scale nonlinear datasets. The motivation is to exploit both the efficiency of linear SVMs (LSVMs) in learning and prediction and the power of nonlinear SVMs in classification. To this end, we develop a LSVM mixture model that exploits a divide-and-conquer strategy by partitioning the feature space into subregions of linearly separable datapoints and learning a LSVM for each of these regions.

View Article and Find Full Text PDF

Multiple instance learning (MIL) is a paradigm in supervised learning that deals with the classification of collections of instances called bags. Each bag contains a number of instances from which features are extracted. The complexity of MIL is largely dependent on the number of instances in the training data set.

View Article and Find Full Text PDF

This paper offers two new directions to shape-from-shading, namely the use of the heat equation to smooth the field of surface normals and the recovery of surface height using a low-dimensional embedding. Turning our attention to the first of these contributions, we pose the problem of surface normal recovery as that of solving the steady state heat equation subject to the hard constraint that Lambert's law is satisfied. We perform our analysis on a plane perpendicular to the light source direction, where the z component of the surface normal is equal to the normalized image brightness.

View Article and Find Full Text PDF

In this paper, we explore how graph-spectral methods can be used to develop a new shape-from-shading algorithm. We characterize the field of surface normals using a weight matrix whose elements are computed from the sectional curvature between different image locations and penalize large changes in surface normal direction. Modeling the blocks of the weight matrix as distinct surface patches, we use a graph seriation method to find a surface integration path that maximizes the sum of curvature-dependent weights and that can be used for the purposes of height reconstruction.

View Article and Find Full Text PDF