Background: Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE).
Purpose: To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols.
The original version of this article, published on 15 October 2018, unfortunately contained a mistake. The following correction has therefore been made in the original: The name of Mariano Amo-Salas and the affiliation of Ismael Herruzo were presented incorrectly.
View Article and Find Full Text PDFObjectives: We wished to determine whether tumor morphology descriptors obtained from pretreatment magnetic resonance images and clinical variables could predict survival for glioblastoma patients.
Methods: A cohort of 404 glioblastoma patients (311 discoveries and 93 validations) was used in the study. Pretreatment volumetric postcontrast T1-weighted magnetic resonance images were segmented to obtain the relevant morphological measures.
Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected.
View Article and Find Full Text PDFHigh-resolution magic angle spinning (HR-MAS) one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy has been used to study intact glioblastoma (GBM) brain tumour tissue. The results were compared with in vitro chemical extract and in vivo spectra. The resolution of 1H one-dimensional, 1H TOCSY and 13C HSQC HR-MAS spectra is comparable to that obtained on perchloric extracts.
View Article and Find Full Text PDFOur objectives were to analyze different semiological patterns in craniopharyngiomas studied with CT and MR sequences. Retrospective study of 26 patients with confirmed craniopharyngiomas. All cases were examined with CT and MR imaging using a variety of pulse sequences (spin echo, inversion recovery, gradient echo in-phase and opposed-phase).
View Article and Find Full Text PDF