The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives).
View Article and Find Full Text PDFLeishmaniasis is an infectious disease caused by protozoan parasites of the genus . There is no vaccine against human leishmaniasis and the treatment of the disease would benefit from a broader spectrum and a higher efficacy of leishmanicidal compounds. We analyzed the leishmanicidal activity and the mechanism of action of the calcium ionophore, calcimycin.
View Article and Find Full Text PDFAnimals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved.
View Article and Find Full Text PDFTNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand from the TNF-alpha family that is under consideration, along with agonistic anti-TRAIL receptor antibodies, as a potential anti-tumor agent. However, most primary human tumors are resistant to monotherapy with TRAIL apoptogens, and thus the potential applicability of TRAIL in anti-tumor therapy ultimately depends on its rational combination with drugs targeting these resistances. In our high-throughput screening for novel agents/drugs that could sensitize TRAIL-resistant colorectal cancer cells to TRAIL-induced apoptosis, we found homoharringtonine (HHT), a cephalotaxus alkaloid and tested anti-leukemia drug, to be a very effective, low nanomolar enhancer of TRAIL-mediated apoptosis/growth suppression of these resistant cells.
View Article and Find Full Text PDFNovel compounds termed lipophosphonoxins were prepared using a simple and efficient synthetic approach. The general structure of lipophosphonoxins consists of four modules: (i) a nucleoside module, (ii) an iminosugar module, (iii) a hydrophobic module (lipophilic alkyl chain), and (iv) a phosphonate linker module that holds together modules i-iii. Lipophosphonoxins displayed significant antibacterial properties against a panel of Gram-positive species, including multiresistant strains.
View Article and Find Full Text PDFMatrix Gla protein (MGP) is an extracellular mineral-binding protein expressed in several tissues while accumulated only in bone and cartilage under physiological conditions. Although the precise molecular mechanism of action of MGP remains unknown, all available evidence indicates that it acts as a physiological inhibitor of mineralization. This work presents the cloning of gilthead seabream MGP gene (SaMGP) and the functional analysis of its promoter.
View Article and Find Full Text PDFOsteonectin is a matricellular protein involved in various cellular mechanisms but its exact function remains unclear despite numerous studies. We present here the cloning of Sparus aurata partial osteonectin cDNA and the reconstruction of 15 other sequences from both vertebrates and invertebrates, almost doubling the set of available sequences (a total of 35 sequences is now available). Taking advantage of the resulting large amount of data, we have created multiple sequence alignments and identified osteonectin putative conserved features (intra- and inter-disulfide bonds, collagen- and calcium-binding domains and phosphorylation sites) likely to be important for protein structure and function.
View Article and Find Full Text PDFA growing interest in the understanding of the ontogeny and mineralization of fish skeleton has emerged from the recent implementation of fish as a vertebrate model, particularly for skeletal development. Whereas several in vivo studies dealing with the regulation of bone formation in fish have been published, in vitro studies have been hampered because of a complete lack of fish-bone-derived cell systems. We describe here the development and the characterization of two new cell lines, designated VSa13 and VSa16, derived from the vertebra of the gilthead sea bream.
View Article and Find Full Text PDF